

ROYAL SCHOOL OF INFORMATION TECHNOLOGY (RSIT)

Learning Outcomes based Curriculum Framework (LOCF)

2021-2022

SYLLABUS

&

COURSE STRUCTURE

MCA (2 YEARS)

Page **1** of **77**

Table of Contents -

Sl.	Contents	Page No
No.		(to – from)
1	Introduction	3
2	Learning outcomes based approach to curriculum planning	3
3	Attributes for Learner of MCA	4-5
4	Program Learning Outcomes in MCA	5
5	Qualification Descriptors for MCA	5-6
6	Program Structure of MCA	6-9
7	Detailed Syllabus of Semester – I	10-25
8	Detailed Syllabus of Semester – II	26-42
9	Detailed Syllabus of Semester – III	43-54
10	Detailed Syllabus of Department Specific Electives (DSE)	55-73
11	Detailed Syllabus of Ability Enhancement Elective Courses (AEEC)	74-77

1. Introduction

The main objective of this report is to propose a curriculum for the 3 year Master of Computer Applications (MCA) course which is an important source of human resource for the software industry. The first MCA curriculum was proposed in 1982 and was later revised by a working group of the Indian Society of Technical Education in 1990.

The MCA program is a blend of both theoretical and practical knowledge. An MCA degree give students' an opportunity to work with tools meant to develop better and faster applications. A good curriculum is an essential requirement for ensuring quality of an academic program. Currently, Information Technology is growing rapidly and increasing applications of computers in almost all areas of human endeavor has led to a vibrant industry with concurrent rapid change in technology. Thus the challenge in designing a curriculum is to identify the areas of core competence which is stable and provide sufficient number of electives and laboratories. Thus the suggested curriculum has a strong laboratory and project orientation in which the use of new tools will be emphasized. Most courses will have an associated laboratory and it is expected that they will be equipped with the latest software tools. As the subject of information technology is changing very fast it is suggested that the curriculum be revised at least once in 3 years.

2. Learning Outcomes based approach to Curriculum Planning

The primary emphasis in MCA is on designing information systems for various organizations such as banks, insurance companies, hotels, hospitals etc. Development of application software in diverse areas where computers are used will be the main function of MCA graduates. The major thrust is on giving the students a sound background in computing, business functioning and mathematics relevant to Information Technology. In computing, students learn best by doing practicals. A strong laboratory component is a part of the curriculum. The laboratories, besides supplementing the theory course will also expose the student to the use of the latest software tools. Every MCA student is required to spend one semester in doing minor project and the last semester must do major project. It is suggested that the student periodically report to college and present a seminar on the work being done by him.

2.1 Nature and extent of MCA

MCA is a two year (4 semester) course. The students entering MCA must have a B.C.A./B.Sc./ B.Com/B.A. degree with Mathematics as one of the subjects at 10+2 level or at graduation. The MCA program is planned to have 5 theory subject plus two laboratories each semester. The curriculum has a strong core covering information technology, business management and mathematics. The key areas of study advanced level in M.C.A. are as follows:

- I. Programming in C
- II. Digital Systems
- III. Object Oriented Programming & Design
- IV. Computer Organization and Architecture
- V. Data Structures and Algorithms
- VI. Operating Systems
- VII. Formal Language and Automata Theory
- VIII. Advanced Database Management Systems
- IX. Design and Analysis of Algorithms
- X. Computer Communication Networks
- XI. Software Testing and Quality Assurance
- XII. Web Programming

2.2 Aims of M.C.A. Program

The overall aims of MCA program are to:

- Learn about the fundamental definitions and higher concepts of computers applications.
- Have an understanding of different tools and software which is used in problem solving.
- Impart comprehensive knowledge with equal emphasis on theory and practice.
- Have exposure to diverse platforms that will motivate the learners to move ahead in future.
- Progress their career productively in software industry, academia, research, entrepreneurial pursuit, government, consulting firms and other Information Technology enabled services.
- To achieve peer-recognition; as an individual or in a team; by adopting ethics and professionalism and communicate effectively to excel well in cross culture and inter-disciplinary teams.
- To embed strong human value and professional ethics for becoming socially responsible citizen.

3. Attributes for learner of M.C.A.

Some of the attributes are listed below:

3.1 Disciplinary knowledge: Ability of demonstrating comprehensive knowledge of computer applications and its subfields, and its applications to one or more disciplines.

3.2 Communications skills: Capability to express various concepts of computer applications in effective and coherent manner using examples, ability to present the complex problem solving ideas in clear, precise and confident way; capability to communicate thoughts and views in correct statements.

3.3 Critical thinking and analytical reasoning:

(i) Ability to employ foundations of computer science, critical thinking in understanding the concepts in every area of computer applications and allied areas.

(ii) Capability to formulate mathematically correct arguments.

(iii)Ability to analyze the results and apply them in relevant various problems appearing in different branches of mathematics.

3.4 Problem solving: Capacity to use the earned knowledge to solve different non-familiar problems and apply the learning to real world situations; capability to solve problems in computer graphics using concepts of linear algebra; Capability to apply the acquired knowledge in differential equations to solve specific problems in other disciplines.

3.5 Research-related skills:

(i) Potentiality to think and inquire about relevant/appropriate questions, ability to define problems, formulate and test hypotheses, formulate mathematical arguments and proofs, draw conclusions; ability to write the obtained results clearly.

(ii) To know about the developments in various branches of mathematics.

(iii)To understand application of mathematics in natural, biological and social sciences.

3.6 Information/digital literacy:

(i) Ability to use ICT tools in solving problems or earning knowledge

(ii) Capacity to use appropriate software and programming skills to solve problems.

3.7 Self-directed learning: Potentiality to work independently and do in-depth study of various concepts of computer applications and ability to search relevant resources and e- resources for self-learning and amplifying knowledge in mathematics.

3.8 Moral and ethical awareness/reasoning: Ability to identify unethical behaviour such as fabrication or misrepresentation of data, committing plagiarism, infringement of intellectual property rights and adopting objective, unbiased and truthful actions in all aspects.

3.9 Lifelong learning: Ability to earn knowledge and skills through self-learning that helps in personal development as well as skill development to make them suitable for changing demands of work place.

4. Programme Learning Outcomes in MCA

On completion of MCA degree, it will enable the students to

- have successful careers based on their understanding of formal and practical methods of Application Development using the concepts of computer programming, software and design principles.
- demonstrate analytical and design skills including the ability to generate creative solutions and foster team-oriented, professionalism through effective communication in their careers.
- exhibit effective work ethics and be able to adapt to the challenges of a dynamic job environment.
- Identify opportunities, entrepreneurship vision and use of innovative ideas to create value and wealth for the betterment of the individual and society.
- recognize economical, environmental, social, health, legal, ethical issues involved in the use of computer technology and other consequential responsibilities relevant to professional practice.

5. Qualification descriptors for M.C.A.

The course structure of MCA covers a full range of the computer application domain starting from basics in computer fundamentals, data structures, various high level programming paradigms to web technologies so as to learn the overall core concepts associated with the domain. Thus, the qualification descriptors for MCA are as follows:

- a. Demonstrate coherent knowledge and understanding of the logical organization of a digital computer, its components and working.
- b. Understanding of the time and space complexities of algorithms along with the knowledge in the various categories of algorithms designed to solve computational problems.
- c. Demonstrate programming skills in high level language and an ability to learn a new programming paradigm to implement th same fo different time of problem solving aspects.
- d. Apply knowledge of logical skills to identify and analyze problems and issues, and seek solutions to real-life problems. For example, creating mobile applications, database applications, and educative computer games.
- e. Communication and leadership abilities and ability to do team work so as to cope up in different working environments.

6. Program Structure of MCA

MCA

Programme Structure

	1st semester							
S.N	Subject Code	Names of subjects	L	Т	Р	С	ТСР	
Core Courses (CC)								
1	CAP054C101	Object Oriented Programming using JAVA	4	0	0	4	4	
2	CAP054C102	Advanced Data Structures	4	0	0	4	4	
3	CAP054C103	Theory of Computation	4	0	0	4	4	
4	CAP054C104	Computer Organization and Architecture	4	0	0	4	4	
6	CAP054C111	Object Oriented Programming using JAVA Lab	0	0	4	2	4	
7	CAP054C112	Advanced Data Structures Lab	0	0	4	2	4	
		Department Specific Elective (DSE)						
8	CAP054D10X	DSE-I	4	0	0	4	4	
		Ability Enhancement Elective Courses (AEE	C)					
		Ability Enhancement Compulsory Courses (Al	ECC)					
9	BHS984A103	Fundamentals of Organizational Behaviour	1	0	0	1	1	
10	CEN984A101	Communication: Skills, Concepts and Applications	1	0	0	1	1	
		TOTAL	22	0	8	26	30	
		2nd semester		T	1	-	1	
SN	Subject Code	Names of subjects	L	Т	Р	С	ТСР	
		Core Courses (CC)	-	T				
1	CAP054C201	Advanced Computer Networks	4	0	0	4	4	
2	CAP054C202	Modern Operating System	4	0	0	4	4	
3	CAP054C203	Advanced Database Management Systems	4	0	0	4	4	
4	CAP054C204	Pattern Recognition	4	0	0	4	4	
5	CAP054C211	Advanced Computer Networks Lab	0	0	4	2	4	
7	CAP054C213	Advanced Database Management Systems Lab	0	0	4	2	4	
	Department Specific Elective (DSE)							
8	CAP054D20X	DSE-II	4	0	0	4	4	
		Ability Enhancement Elective Courses (AEE	C)					
9	CAP054S20X	AEEC-I	2	0	0	2	2	
		Ability Enhancement Compulsory Courses (Al	ECC)					

10	BHS984A203	Individual and Interpersonal Behavior	1	0	0	1	1
11	CEN984A201	Business Environment and Communication	1	0	0	1	1
		TOTAL	24	0	6	28	32
	3rd semester						
SN	Subject Code	Names of subjects	L	Т	Р	С	ТСР
		Core Courses (CC)					
1	CAP054C301	Design and Analysis of Algorithms	4	0	0	4	4
2	CAP054C302	Web Technologies	4	0	0	4	4
3	CAP054C303	Advanced Software Engineering	4	0	0	4	4
4	CAP054C301	Design and Analysis of Algorithms Lab	0	0	4	2	4
5	CAP054C311	Web Technologies Lab	0	0	4	2	4
Department Specific Elective (DSE)							
5	CAP054D30X	DSE-III	4	0	0	4	4
6	CAP054D30X	DSE -IV	4	0	0	4	4
		Ability Enhancement Compulsory Courses (AE	CC)				
7CEN984A301Kinesics and Effective Communication10011							
		Ability Enhancement Elective Courses (AEEC	:)				
8	CAP054S30X	AEEC-II	2	0	0	2	2
		TOTAL	23	0	8	27	31
		4th semester		_			
SN	Subject Code	Names of subjects	L	Т	Р	С	ТСР
		Ability Enhancement Compulsory Courses (AE	CC)				
1	CEN984A401	Advance Corporate Communication	1	0	0	1	1
		Project		_		-	
2	CAP054C425	Project Dissertation	0	0	0	20	0
		TOTAL	1	0	0	21	1
	1	-					

SEMESTER	CREDITS
I	26
II	28
III	27
IV	21

TOTAL CREDITS = 102

	LIST OF DEPARTMENT SPECIFIC ELECTIVES					
Elective No	Sl. No	Subject Code	Name of the Elective			
I	1	CAP054D101	Data Science using R			
-	2	CAP054D102	Distributed Systems			

	3	CAP054D103	Natural Language Processing
	4	CAP054D104	Machine Learning and Fuzzy Logic
	1	CAP054D201	Bioinformatics
II	2	CAP054D202	Wireless Computing
	3	CAP054D203	Soft Computing
	1	CAP054D301	Artificial Intelligence
III	2	CAP054D302	Big Data Analytics
	1	CAP054D303	Cloud Computing
	2	CAP054D304	Cyber Forensics
IV	3	CAP054D305	Internet of Things
	4	CAP054D306	Cryptography and Network Security

	SUBJECTS UNDER AEEC					
AEEC No	Sl. No	Subject Code	Name of the Elective			
Ι	1	INT054S201	General Aptitude and Quantitative Reasoning-I			
II	3	INT054S302	General Aptitude and Quantitative Reasoning-II			

Scheme of Evaluation

Theory Papers (T):

- Continuous Evaluation: 15% (Assignment, Class Test, Viva, Seminar, Quiz: Any Three)
- Mid-term examination: 10%
- Attendance: 5%
- End Term Examination: 70%

Practical Papers (P):

- **Continuous Evaluation: 25%** (Skill Test, lab copy, viva, lab involvement: Any Three)
- Attendance: 5%
- End term examination: 70 %

Combined Theory & Practical Papers (TP):

- Continuous Evaluation: 15% (Assignment. Class Test, Lab Experiment, Lab Copy, Viva: Any Three)
- Mid-term examination: 10%
- Attendance: 5%
- End term examination: 70 %

7. Detailed Syllabus of 1st Semester

Paper I/ Subject Name: Object Oriented Programming using JAVA		Subject Code: CAP054C101
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To teach the basic concept and techniques which form the object oriented programming paradigm which is a new way of thinking about problem using models organizes around real world concept.
- To explain the concepts of object oriented programming using JAVA.

Prerequisites: Basics of Programming

Modules	Topics	Course content	Periods
I	Introduction	A look at procedure-oriented programming, Object-oriented paradigm, Basic concepts of object-oriented programming (OOP) (encapsulation, inheritance, polymorphism), How Java differs from C and C++, Applications of OOP. Overview of JAVA, Use of math functions, comments, Constructing a java program, Introduction of JVM, Command line argument, Data types, Variables: declaration, scope, Type Conversion and Type Casting, Constants, Operators, Evaluation of Expression, Precedence of Operators, Control statements: selection, iteration and jump.	12
		Class: definition and example, Declaring objects, Method overloading and overriding, Binding : concept of binding, static vs. dynamic binding, Using	
II	Classes and	this and super keywords, Access Control, Inheritance: Extending a class,	12

	Objects	Final, Abstract classes, Constructors Arrays: one-dimensional and multi-dimensional, Strings : string processing functions	
III	Packages, Interfaces, Exception Handling	Defining a package, accessing a package and using a package, Interfaces: multiple inheritances, Defining interfaces, implementing interfaces and extending interfaces. Exception handling fundamentals, Exception type: using trycatch, Multiple catch clauses, Throw and Throws Creating threads, Extending the thread class, Stopping and blocking a thread, Life cycle of thread, Threads methods, Thread exceptions	12
IV	Applets and Files	Introduction: local and remote applets, How to write applets, Building applet code, Applet life cycle, Creating an executable applet I/O basics, concept of streams, Stream classes: byte stream classes, character stream classes, I/O exceptions, Creation of files, Random access files	12
	•	Total	48

Text Books:

- 1. Programming with Java: A Primer, E. Balagurusamy, 3rd Edition, 2005, Tata McGraw-Hill, New Delhi
- 2. Thinking in Java, Bruce Eckel, 4th Edition, 2006, PHI.

Reference Books:

- 1. Maurice Naftalin et al, *Java Generics and Collections*, 1st Edition, 2006, O'REILLY Publication.
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson, *The Unified Modeling Language User Guide*, 2nd Edition, 2005, Pearson Education.
- 3. Herbert Schildt, The Complete Reference Java, 7th Edition, 2007, Tata McGraw-Hill, New Delhi

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Show competence in the use of JAVA language in the development different programs. Understand the basic principles of the object-oriented programming Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event-driven programming. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper II/Subject Name: Advanced Data	Subject Code: CAP054C102	
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To explain the basic concepts of Data Structures and Algorithms.
- To give students an in-depth concept of various kinds of Trees.
- To explain detailed concepts on Searching and Sorting.
- To give students exposure to the advanced topics in Data Structures like Graphs, Heaps, Hashing & Collision.

Prerequisites: Concepts of Computer Programming

Modules	Topics	Course content	Periods
Ι	Introduction to Data Structures and Algorithms	Introduction, Basic Terminology, Classification of Data Structures, Operations on Data Structures, Abstract Data Type. Algorithms- Different Approaches to Designing an Algorithm, Control Structures Used In Algorithms, Time and Space Complexity, Big O Notation, Omega Notation, Theta Notation, Other Useful Notations. Linked Lists- Introduction, Singly Linked Lists, Circular Linked Lists, Doubly Linked Lists, Circular Doubly Linked Lists, Header Linked Lists, Multi-Linked Lists, Operations, Applications of Linked Lists. Stacks- Introduction, Array Representation of Stacks, Operations on Stacks, Multiple Stacks, Applications of Stacks. Queues- Introduction, Array Representation of Queues, Linked Representation of Queues, Types of Queues, Operations on various types of Queues, Applications of Queues.	12
II	Trees	Trees- Introduction, Types of Trees, Creating a Binary Tree from a General Tree, Traversing a Binary Tree, Huffman's Tree, applications of Trees. Efficient Binary Trees- Binary Search Trees, Operations on Binary Search Trees, Threaded Binary Trees, AVL Trees, Red-Black Trees, Splay Trees. Multi-way Search Trees- Introduction to M-Way Search Trees, B Trees, B+ Trees, 2-3 Trees, Trie.	12
III	Searching and Sorting	Searching- Introduction, Linear Search, Binary Search, Interpolation Search, Jump Search. Sorting- Introduction, Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Quick Sort, Radix Sort, Heap Sort, Shell Sort, Tree Sort, Comparison of Sorting Algorithms, External Sorting.	12
IV	Graphs, Heaps, Hashing & Collision	Graphs- Introduction, Graph Terminology, Directed Graphs, Bi- Connected Components, Representation of Graphs, Graph Traversal Algorithms, Topological Sorting, Applications of Graphs. Heaps- Binary Heaps, Binomial Heaps, Fibonacci Heaps, Comparison among Heaps, Applications of Heaps.	12

	Hashing & Collision- Introduction, Hash Tables, Hash Functions, Different Hash Functions, Collisions, Applications of Hashing.	
	Total	48

Text Book:

1. *Data Structures Using C*, Reema Thareja, 2nd Edition, 2014, Oxford University Press.

Reference Books:

- 1. S. K. Srivastava and Deepali Srivastava, *Data Structures through C in Depth*, 1st Edition, 2004, BPB Publications.
- 2. Seymour Lipschutz, *Data Structures*, 1st Edition (reprint) 2017, McGraw Hill Education.
- 3. Narasimha Karumanchi, *Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles*, 5th Edition, 2016, Careermonk Publications.
- 4. Tenenbaum, *Data Structures Using C*, 2008, Pearson Education India.
- 5. Yashavant P. Kanetkar, *Data Structure through C*, 2nd Edition, 2003, BPB Publications.
- 6. A. M. Padma Reddy, *Data Structures*, Revised edition, 2017, Sri Nandi Publications.
- 7. Richard F. Gilberg, *Data Structures: A Pseudocode Approach with C*, Indian Edition, 2007, Cengage Learning.
- 8. Horowitz, Sahni and Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, 2008, Universities Press.
- 9. E. Balagurusamy, *Data Structures Using C*, 1st Edition, 2017, McGraw Hill Education.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Have the understanding the data structures, their advantages and drawbacks and how they can be overcome. Have the understanding their applications and their uses. Have an idea of about the data structure methods or algorithms mentioned in the course so as to make use of them in a program to enhance their efficiency. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Facilitating the Achievement of Course Learning Outcomes

Paper III/Subject Name: Theory of Computation

Subject Code: CAP054C103

L-T-P-C - 4-0-0-4

Objective:

The objectives of the course are:

- To provide basic concepts of Theory of Computations and Finite Automata.
- To give an exposure to Context-Free Language and Push Down Automata.
- To explain about Turing Machines and Chomsky Hierarchy.
- To teach about Decidability and Complexity Theory.

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	Hours
I	Basic Concepts of Theory of Computations and Finite Automata	eory of utationsFinite State Machines- Finite State Automata, Transition System, DFA, NFA, Acceptability of a String, Equivalence of NFA & DFA, NFA with transitions.FiniteRegular expressions, regular Grammars, Equivalence between Regular	
II	Context-Free Language and Push Down Automata	ontext-Free Languages- Introduction, Context-Free Grammars, Derivation rees, Left-most Derivation and Right-most Derivation, Ambiguity in CFG, implification of CFG, Normal forms. ush Down Automata- Basic definition and PDA model, Deterministic & on-deterministic PDA, Equivalence of Acceptance, PDA Lemma for CFL's, umping Lemma for CFLs	
ш	Turing Machines and Chomsky Hierarchy	Turing Machines- Turing Machine Model, Representation, Language Acceptance, Design of TM, Recursively enumerable languages, Church's Hypothesis, Types of TMs, Halting Problem.	12
IV	Decidability and Complexity Theory	Decidable and Undesirable Languages- Decidability, Countable sets, Rice's Theorem, Enumerability, the relationship between decidable and enumerable languages. Complexity Theory- the running time of algorithms, the complexity classes P & NP, Non-deterministic algorithms, NP-complete languages.	12
Total			48

Text Books:

- 1. *Theory of Computer Science: Automata, Languages and Computation,* K. L. P. Mishra and N. Chandrasekaran, 3rd Edition, 2006, Prentice Hall India Learning Private Limited.
- 2. *Theory of Computation: Formal Languages and Automata Theory,* G. P. S. Verma and B. T. Rao, Scitech Publications (India) Pvt. Ltd.
- 3. Introduction to the Theory of Computation, Michael Sipser, 3rd Edition, 2012, Cengage Learning.

Reference Books:

- 1. Hopcroft, *Introduction to Automata Theory, Languages, and Computation*, 3rd Edition, 2008, Pearson Education India.
- 2. Vivek Kulkarni, *Theory of Computation*, 2013, Oxford University Press.
- 3. A.M. Natarajan, A. Tamilarasi and P. Balasubramani, *Theory of Computation*, 2008, New Age Publishers.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Analyse and design finite automata, pushdown automata, Turing machines, formal languages, and grammars. Demonstrate the understanding of key notions, such as algorithm, computability, decidability, and complexity through problem solving. Prove the basic results of the Theory of Computation. 	 Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper IV/ Subject Name: Computer Org	ganization and Architecture	Subject Code: CAP054C104
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To make the students understand the machine instructions and basic computer organization
- To give an idea of representation of information in computers
- To explain about memory hierarchy and various memory mapping techniques
- To teach I/O subsystems and pipelining processing.

Prerequisites:

Modules	Topics	Course content	Periods
I	Overview of ComputerComputer Evolution and Performance- Designing for Performance, Performance Assessment.ArchitectureComputer Function and Interconnection- Computer Components, Computer Function, Interconnection Structures, Bus Interconnection. Computer Arithmetic- Integer Representation, Integer Arithmetic, Floating-Point Representation, Floating-Point Arithmetic.		12
Π			12
III Central Processing Unit		Characteristics and Functions of Instruction Sets- Machine Instruction Characteristics, Types of Operands, Types of Operations. Addressing Modes and Formats- Addressing, Instruction Formats, Assembly Language. Processor Structure and Function- Processor Organization, Register Organization, the Instruction Cycle, Instruction Pipelining. Reduced Instruction Set Computers (RISCs)- Instruction Execution Characteristics, the use of a Large Register File, Compiler-Based Register Optimization, Reduced Instruction Set Architecture, RISC Pipelining. Control Unit Operation- Micro-operations, Control of the Processor, Hardwired Implementation. Microprogrammed Control- Basic Concepts, Microinstruction Sequencing, Microinstruction Execution.	12
IV	Parallel Organization	Instruction-Level Parallelism and Superscalar Processors- Overview, Design Issues. Parallel Processing- the use of Multiple Processors, Symmetric Multiprocessors, Cache Coherence and the MESI Protocol, Multithreading and Chip Multiprocessors, Clusters, Non Uniform Memory Access Computers, Vector Computation. Multicore Computers- Hardware Performance Issues, Software Performance Issues, Multicore Organization.	12
		Total	48

Text Book:

- 1. *Computer System and Architecture*, Moris Mano, 3rd Edition, 2007, PHI.
- 2. Structured Computer Organization, A. S. Tanenbaum, 5th Edition, 2009, Prentice Hall of India

Reference Books:

- 1. V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, *Computer Organization*, 5th Edition, 2002 McGraw Hill.
- 2. J. L. Hennessy and D. A. Patterson, *Computer Architecture: A Quantitative Approach*, 4th Edition, 2006, Morgan Kaufmann.
- 3. D. V. Hall, *Microprocessors and Interfacing*, 2nd Edition, 2006, McGraw Hall.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Have an overview of Computer Organization and Architecture. Have an in-depth concept of the Computer System. Have detailed concepts on the Central Processing Unit. Have exposure to Multicore computing and Parallel Organization of Computers. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper V/Subject Name: Object Oriented Programming using JAVA Lab		Subject Code: CAP054C111
L-T-P-C - 0-0-4-2	Credit Units: 02	Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To teach the basic concept and techniques which form the object oriented programming paradigm which is a new way of thinking about problem using models organizes around real world concept.
- To practically explain the concepts of object oriented programming using JAVA.

Prerequisites: Basics of Procedural or Object Oriented Programming

Detailed Syllabus:

Minimum 20 Laboratory experiments based on the following-

- Write a program in java that outputs your name in giant letters.
- Write a program in Java to find the day of the week of a given date.
- Write a program in Java called GradesStatistics, which reads in n grades (of int between 0 and 100, inclusive) and displays the average, minimum, maximum, and standard deviation.
- Write a program in Java to compute execution time by generating random numbers.
- Write a program in Java to implement the following:
 - a. Tokenize the paragraph into single word.
 - b. Find the number of word in a paragraph?
 - c. Find the number of similar words from the input word.
 - d. Find the number of occurrence of each word.
- Write a program in Java to implement some inheritance hierarchy.
- Design and implement an address book object that contains a person's name, home address and phone number, business address and phone number, and numbers for their fax machine, cellular phone, and pager. Write a program in Java to this test plan for the object and implement a driver [finally prepare a package].
- Write a program in Java to demonstrate the use of try, catch, finally throw and throws keywords and demonstrate the following points in the program.
 - a. Multiple catch blocks.
 - b. try-catch-finally combination.

- c. try-finally combination.
- d. Exception propagation among many methods.
- e. Use of getMessage(), printStackTrace() function of Throwable class.
- f. Nested try blocks
- Write a program that does the following.
 - a. Prompts the user for an input file name through a dialog box.
 - b. Prompts the user for an output file name through a dialog box.
 - c. Copies the input file into the output file, subject to the removal of the space characters listed below from each line.
 - i. The leading space characters
 - ii. The trailing space characters
 - iii. The space characters that are preceded by space characters
- Write a program in Java to design forms.
- Write a program in Java to design a student information form to enter data into the database.
- Write a program in Java to connect some form designed with the back-end database and test them by inserting some records.

Text Books:

- 1. Programming with Java: A Primer, E. Balagurusamy, 3rd Edition, 2005, Tata McGraw-Hill, New Delhi
- 2. Thinking in Java, Bruce Eckel, 4th Edition, 2006, PHI.

Reference Books:

- 1. Maurice Naftalin et al, Java Generics and Collections, 1st Edition, 2006, O'REILLY Publication.
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson, *The Unified Modeling Language User Guide*, 2nd Edition, 2005, Pearson Education.
- 3. Herbert Schildt, The Complete Reference Java, 7th Edition, 2007, Tata McGraw-Hill, New Delhi

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Show competence in the use of JAVA language in the development different programs. Understand the basic principles of the object-oriented programming Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event-driven programming. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VI/ Subject Name: Advanced Data Structuress Lab

Subject Code: CAP054C112

L-T-P-C - 0-0-4-2

Credit Units: 02

Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To explain practically the concepts of Data Structures and Algorithms.
- To provide an in-depth practical experience of various kinds of Trees.
- To give students detailed practical experience on Searching and Sorting.
- To teach the advanced topics in Data Structures like Graphs, Heaps, Hashing & Collision.

Prerequisites: Concepts of Computer Programming

Detailed Syllabus:

Minimum 20 Laboratory experiments based on the following-

- 1. Introduction, Basic Terminology, Classification of Data Structures, Operations on Data Structures, Abstract Data Type.
- 2. Algorithms- Different Approaches to Designing an Algorithm, Control Structures Used In Algorithms, Time and Space Complexity, Big O Notation, Omega Notation, Theta Notation, Other Useful Notations.
- 3. Linked Lists- Introduction, Singly Linked Lists, Circular Linked Lists, Doubly Linked Lists, Circular Doubly Linked Lists, Header Linked Lists, Multi-Linked Lists, Operations, Applications of Linked Lists.Stacks-Introduction, Array Representation of Stacks, Operations on Stacks, Multiple Stacks, Applications of Stacks.
- 4. Queues- Introduction, Array Representation of Queues, Linked Representation of Queues, Types of Queues, Operations on various types of Queues, Applications of Queues.
- 5. Trees- Introduction, Types of Trees, Creating a Binary Tree from a General Tree, Traversing a Binary Tree, Huffman's Tree, applications of Trees.
- 6. Efficient Binary Trees- Binary Search Trees, Operations on Binary Search Trees, Threaded Binary Trees, AVL Trees, Red-Black Trees, Splay Trees.
- 7. Multi-way Search Trees- Introduction to M-Way Search Trees, B Trees, B+ Trees, 2-3 Trees, Trie.
- 8. Searching- Introduction, Linear Search, Binary Search, Interpolation Search, Jump Search.
- 9. Sorting- Introduction, Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Quick Sort, Radix Sort, Heap Sort, Shell Sort, Tree Sort, Comparison of Sorting Algorithms, External Sorting.
- 10. Graphs- Introduction, Graph Terminology, Directed Graphs, Bi-Connected Components, Representation of Graphs, Graph Traversal Algorithms, Topological Sorting, Applications of Graphs.
- 11. Heaps- Binary Heaps, Binomial Heaps, Fibonacci Heaps, Comparison among Heaps, Applications of Heaps.
- 12. Hashing & Collision- Introduction, Hash Tables, Hash Functions, Different Hash Functions, Collisions, Applications of Hashing.

Text Book:

1. *Data Structures Using C*,ReemaThareja, 2nd Edition, 2014, Oxford University Press.

Reference Books:

- 1. S. K. Srivastava and Deepali Srivastava, *Data Structures Through C in Depth*, 1st Edition, 2004, BPB Publications.
- 2. Seymour Lipschutz, *Data Structures*, 1st Edition (reprint) 2017, McGraw Hill Education.

- 3. NarasimhaKarumanchi, *Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles*, 5th Edition, 2016, Careermonk Publications.
- 4. Tenenbaum, Data Structures Using C, 2008, Pearson Education India.
- 5. Yashavant P. Kanetkar, *Data Structure through C*, 2nd Edition, 2003, BPB Publications.
- 6. A. M. Padma Reddy, *Data Structures*, Revised dition, 2017, Sri Nandi Publications.
- 7. Richard F. Gilberg, Data Structures: A Pseudocode Approach with C, Indian Edition, 2007, Cengage Learning.
- 8. Horowitz, Sahni and Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, 2008, Universities Press.
- 9. E. Balagurusamy, *Data Structures Using C*, 1st Edition, 2017, McGraw Hill Education.

Facilitating the Achievement of Course Learning Outcomes

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Learn the implementation of various data structures through C++. Understandthe applications and uses of data structures in real world. Learn to analyze the efficiency of algorithms. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation Mid-term examinations :10 marks Class attendance:5 marks End-term examinations:70 marks.

Paper VIII/ Subject Name: Fundamentals of Organizational Behaviour Subject Code: BHS984A103

L-T-P-C - 1-0-0-1

Credit Units: 01

Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To provide students with a better understanding of organizational behavior and insight into the vital parts of an organization, namely, communication and culture

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Understanding Organizational Behaviour	Fundamental concepts: The nature of people, The nature of organizations. Limitations of organizational behaviour: Behavioural bias, The law of diminishing returns Unethical manipulation of people	3
II	Modes of Organizational Behaviour	Autocratic, Custodial, Supportive, Collegial and System	3
III	CommunicationThe importance of communication, The two-way communicationFundamentalsThe importance of communication, The two-way communicationFundamentalsprocess, Potential problems, Communication barriers, Communication symbols, The impact of barriers on the communication process		3
IV	Social System and Organizational Culture	Understanding a social system, Social equilibrium Functional and dysfunctional effects, Psychological and economic contracts, Social culture, Cultural diversity, Social culture values, Organizational culture, Characteristics of culture, Measuring organizational culture, Communicating and changing culture	3
	1	Total	12

Text Books:

1. *Organizational Behaviour: Human behavior at work,* Newstrom, J. W., 2007, Tata McGraw-Hill, New Delhi.

Reference Books:

1. Robbins, S. P., Judge, T. A. & Sanghi, S., *An Essentials of Organizational Behaviour*, 2010, Dorllings Kindersley, India

Learning Outcomes	Teaching Activity	and	Learning	Assessment Tasks
-------------------	----------------------	-----	----------	------------------

Have a better understanding of organizational behavior and insight into the vital parts of an organization, namely,	ii) Class discussions and	discussions (b)Continuous
communication and culture.	encouraged iii) theoretical problems	(i)15 marks on ☐ Assignments
	solving is part of the class to grasp the underlying concepts iv) Students have to go	 Class tests. viva-voce or presentation
	through case studies for real time experience	(ii) Mid-term examinations :10 marks
	v) Students to be encouraged to give short presentations.	(iii) Class attendance -5 marks(c) End-term examinations: 70 marks.

Paper IX/ Subject Name: Communication: Skills, Concepts and Applications Subject Code: CEN984A101

L-T-P-C - 1-0-0-1

Credit Units: 01

Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To give students an exposure to the basics of communication improving their business writing skills, group communication and speaking skills in English by engaging them for meaningful discussion and interactive activities.

Prerequisites: Basic understanding of English.

Modules	Topics	Course content	Periods

I	Basics of Communication	 Nature, Process of Communication, Definition, Classification, Purpose, Channels and Methods , Communication Networks, Organizational Communication (Formal, informal, grapevine), External communication (formal, informal) , Types/forms of Communication (Oral-written, Formal-Informal, Interpersonal- Intrapersonal, Mass- Group, Verbal- Non-Verbal) Non-verbal Communication (types and cross-cultural significance), Barriers to Communication, Communication Breakdown: 7 Cardinal mistake managers make 	3
Ι	Focus on Business Writing Skills	Introduction , Planning & Execution of Messages, Writing different messages Characteristics of Good Writing Business Letters ✓ Format, Language and Types, essentials of good Business letters ✓ Writing routine and good-news letters ✓ Writing a persuasive letter Memorandum (how to write a memo, uses of a memo) Emails (how to write an email, netiquettes, emails and intercultural communication	3
III	Understanding Group communication	Group Discussion - Definition , Advantages, Qualities/skills required/assessed, General Do's & Don'ts, Participating in a GD (Leadership, GD protocol, discussion techniques, Listening)	3
IV	Mastering Speaking Skills	Presentation Skills - Introduction, Importance and Types, Common Problems with Presentations, Presentation Strategies (purpose, Audience, Context, Technique), Preparation and Delivery (Collecting information, Organizing Information), Structure of a Presentation, Delivering the Presentation (Delivery outline, stage fright and speech anxiety, how to deal with stage fright successfully, body language, visual cues, vocal and verbal elements, handling questions, preparing visual aids)	3
	1		

Text Books:

1. *Business Communication: Concepts, Cases and Applications,* Chaturvedi, P. D. and Chaturvedi Mukesh, 2nd Edition, 2011, Dorling Kindersley(India) Pvt. Ltd.

Reference Books:

- 1. Raman, Meenakshi and Sharma, Sangeet, *Technical Communication: Principles and Practices.* 2nd Edition, 2011, Oxford University Press.
- 2. Rizvi, M. Ashraf, *Effective Technical Communication*, 11th reprint. 2008, Tata McGraw Hill Publishing Company Limited.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
Be familiar with the basics of	i) Each topic to be expounded	(a) Participation in class
writing, speaking and group	with adequate examples.	discussions
communication.	ii) Class discussions and	(b)Continuous
	question- answer rounds are	Evaluation(30Marks)
	encouraged	(i)15 marks on
	iii) theoretical problems	□ Assignments
	solving is part of the class to	□ Class tests.
	grasp the underlying concepts	\Box viva-voce or presentation
	iv) Students have to go	
	through case studies for real	(ii) Mid-term examinations
	time experience	:10 marks
	v) Students to be encouraged	(iii) Class attendance -5 marks
	to give short presentations.	(c) End-term examinations: 70
		marks.

8. Detailed Syllabus of Semester-II

Paper I/ Subject Name: Advanced Computer Networks		Subject Code: CAP054C201
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To give students an overview of Computer Networks and introduction to the Physical Layer.
- To provide detailed concepts on the Data-Link Layer
- To explain detailed concepts on the Network Layer.
- To give students the understanding of the Transport Layer and the Physical Layer.

Prerequisites: Basics of trees and graphs

Modules	Topics	Course content	Periods
Ι	Overview of	Introduction- Data Communications, Network Criteria and	12
	Computer	Structures, Network Types. Network Models- Protocol Layering,	
	Networks	TCP/IP Protocol Suite, the OSI Model. Introduction to Physical Layer-	
	and the	Data and Signals, Periodic Analog Signals, Digital Signals,	
	Physical	Transmission Impairment, Data Rate Limits, Performance. Digital	
	Layer	Transmission- Digital-To-Digital Conversion, Analog-To-Digital	
		Conversion, Transmission Modes. Analog Transmission- Digital-To-	
		Analog Conversion, Analog-To-Analog Conversion. Bandwidth	
		Utilization: Multiplexing And Spectrum Spreading- Multiplexing,	
		Spread Spectrum. Transmission Media- Guided Media, Unguided	
		Media. Switching- Introduction, Circuit-Switching, Packet Switching.	

II	The Data-	The Data-Link Layer- Introduction, Link-Layer Addressing. Error	12
	Link Layer	Detection and Correction- Basic concepts, Block Coding, Cyclic Codes,	
	2	Checksum, Forward Error Correction. Data Link Control (DLC)- DLC	
		Services, Data-Link Layer Protocols. Media Access Control (MAC)-	
		Random Access, Controlled Access, Channelization. Wired LANs:	
		Ethernet- Ethernet Protocol, Standard Ethernet, Fast Ethernet,	
		Gigabit Ethernet. Wireless LANs- Introduction, IEEE 802.11 Project,	
		Bluetooth, WiMAX. Connecting Devices and Virtual LANs- Connecting	
		Devices, Virtual Lans.	
III	The	Introduction to Network Layer- Network-Layer Services, Packet	12
	Network	Switching, Performance, IPv4 Addresses, Forwarding of IP Packets.	
	Layer		
		Network-Layer Protocols- INTERNET PROTOCOL (IP), ICMPv4,	
		MOBILE IP. Unicast Routing- Basic concepts, Routing Algorithms,	
		Unicast Routing Protocols. Multicast Routing- Unicasting versus	
		Multicasting versus Broadcasting, Multicasting Basics, Intradomain	
		Multicast Protocols, Interdomain Multicast Protocols. Next	
		Generation IP- IPv6 Addressing, The IPv6 Protocol, The ICMPv6	
		Protocol, Transition From IPv4 to IPv6.	
IV	The	The Transport Layer- Introduction, Transport-Layer Protocols, User	12
	Transport	Datagram Protocol (UDP), Transmission Control Protocol (TCP),	
	Layer and	SCTP. The Application Layer- Introduction, Client-Server	
	The Physical	Programming. Standard Client-Server Protocols- HTTP, Electronic	
	Layer	Mail, TELNET, SSH, DNS.	
		Total	

Text Books:

- *1. Data Communications and Networking,* Forouzan, 4th Edition, 2017, McGraw Hill Education.
- 2. *Computer Networks*, Andrew. S. Tanenbaum and David J. Wetherall, 5th Edition, 2013, Pearson Education India.
- 3. *Computer Networking: A Top Down Approach,* James F. Kurose, 6th Edition, 2017, Pearson Education.

Reference Books:

- 1. Sanjay Sharma, *Computer Networks*, 1st Edition, 2013, S. K. Kataria & Sons.
- 2. Forouzan, *Computer Networks: A Top Down Approach*, 1st Edition, 2017, McGraw Hill Education.
- 3. Narasimha Karumanchi, *Elements of Computer Networking: An Integrated Approach*, 1st Edition, 2017, Careermonk Publications.
- 4. Peterson, *Computer Networks A System Approach*, 5th Edition, 2011, Elsevie

Learning Outcomes	Teaching and Learning	Assessment Tasks	
	Activity		
Independently understand basic computer	i) Each topic to be	(a) Participation in class	
network technology and identify the	expounded with adequate	discussions	
different types of network	examples.	(b)Continuous	
topologies and protocols.	ii) Class discussions and	Evaluation(30Marks)	
• Enumerate the layers of the OSI	question- answer rounds	(i)15 marks on	
model and TCP/IP. Explain the	are encouraged	□ Assignments	
function(s) of each layer.	iii) theoretical problems	□ Class tests.	
• Identify the different types of	solving is part of the class	viva-voce or	

 Understand and building the skills of subnetting and routing mechanisms. Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation. Paper II/Subject Name: Modern Operating Systems Understand and building the iv Students have to go through case studies for real time experience to be marks Subject Code: CAP054C202 	L-T-P-C – 4-0-0-4	redit Units: 04	Scheme of Evaluation: T
skills of subnetting and routing mechanisms.through case studies for real time experienceexaminations :10 marks (iii) Class attendance -5• Familiarity with the basic protocols of computer networks, and how they can be used to assist in networkthrough case studies for real time experienceexaminations :10 marks (iii) Class attendance -5• Familiarity protocols of computer networks, and how they can be used to assist in networkencouraged to give short presentations.(c)End-term examinations: 70 marks.	Paper II/Subject Name: Modern Operating Systems		Subject Code: CAP054C20
	 mechanisms. Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation. 	through case studies for real time experience v) Students to be encouraged to give short presentations.	examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.
	network devices and their functions	to grasp the underlying	presentation

Objective:

The objectives of the course are:

- To give students an introduction to Operating Systems and Process Management.
- To explain detailed concepts on the CPU, Deadlocks, and Memory Management.
- To teach the concepts of Storage and Input/ Output Management.
- To provide an understanding of the advanced topics like Protection, Security, Virtual machines and Distributed Systems.

Prerequisites: Fundamentals of Computer Organization and Architecture

Modules	Topics	Course content	Periods
I	Operating Systems Overview	Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization. Operating system overview-objectives and functions, Evolution of Operating System Computer System Organization Operating System Structure and Operations- System Calls, System Programs, OS Generation and System Boot, OS Operations, Kernel Data Structures, OS Services	12
II	Process Management	Processes – Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication; CPU Scheduling – Scheduling criteria, Scheduling algorithms, Multiple-processor scheduling, Real time scheduling; Threads- Overview, Multithreading models, Threading issues; Process Synchronization – The critical-section problem, Synchronization hardware, Mutex locks, Semaphores, Classic problems of synchronization, Critical regions, Monitors; Deadlock – System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.	12
III		Main Memory – Background, Swapping, Contiguous Memory Allocation, Paging, Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples; Virtual Memory – Background, Demand Paging, Page Replacement, Allocation, Thrashing; Allocating	12

	Memory Management and File Systems	Kernel Memory. File-System Interface- The concept of Files, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection. File-System Implementation- File-System Structure, Directory Implementation, Allocation Methods, Free-Space Management, Disk Scheduling, Disk Management, Swap-Space Management, RAID Structure, Stable-Storage.	
IV Case Study	Case Study	OS Security, Unix Primer, Search and sort tools, AWK tool in Unix, Unix Kernel Architecture, Shell Script in Unix, AWK tool in Unix, Make tool in UNIX, System Administration in Unix, Source Code control system in Unix, X Windows in Unix, Linux System – Design Principles, Kernel Modules, Process Management, Scheduling, Memory Management, Input-Output Management, File System, Inter-process Communication;	12
		Total	48

Text Books:

1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, 7th Edition, 2006, Wiley.

Reference Books:

- 1. William Stallings, *Operating Systems: Internals and Design Principles*, 7th Edition, 2013, Pearson Education India.
- 2. Andrew S. Tanenbaum and Herbert Bos, *Modern Operating Systems*, 4th Edition, 2014, Pearson Education India
- 3. Achyut Godbole and Atul Kahate, *Operating Systems*, 3rd Edition, 2017, McGraw Hill Education.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning	Assessment Tasks
	Activity	
•Learn the fundamentals of	i) Each topic to be	(a) Participation in class
Operating Systems and the	expounded with adequate	discussions
mechanisms of OS to handle	examples.	(b)Continuous
processes and threads and their	ii) Class discussions and	Evaluation(30Marks)
communication.	question- answer rounds are	(i)15 marks on
•Learn the mechanisms involved in	encouraged	□ Assignments
memory management in	iii) theoretical problems	\Box Class tests.
contemporary OS.	solving is part of the class to	\Box viva-voce or presentation
•Gain knowledge on distributed	grasp the underlying	
operating system concepts that	concepts	(ii) Mid-term examinations
includes architecture, Mutual	iv) Students have to go	:10 marks
exclusion algorithms, deadlock	through case studies for real	(iii) Class attendance -5
detection algorithms and	time experience	marks
agreement protocols.	v) Students to be encouraged	(c) End-term examinations:
•Know the components and	to give short presentations.	70 marks.
management aspects of		
concurrency management.		
•Learn programmatically to		
implement simple OS mechanisms.		

Paper III/ Subject Name: Advanced Database Management Systems Subject Code: CAP054C203

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To provide an overview of Databases, Transactions and Data Models.
- To give students an exposure to Database Design, E-R Model, Relational Model, and UML.
- To teach concepts on Relational Algebra, Relational Calculus and SQL.

• To give students the idea about Transaction management and Concurrency control in DBMS.

Prerequisites: Fundamentals of Data Structures

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction to Databases, Transactions and Data Models	What is database system, purpose of database system, Database Administrators, view of data, relational databases, and database architecture. Transaction management. The importance of data models, Basic building blocks, Business rules, The evolution of data models, Degrees of data abstraction.	12
Ι	Database Design ,E-R Model, Relational Model, and UML	Database design and E-R Model- overview, E-R Model, Constraints, E-R Diagrams, E-R Design Issues, weak entity sets, Codd's rules, Relational Schemas. Introduction to UML. Relational database model- Logical view of data, keys, integrity rules. Relational Database design- features of good relational database design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF).	12
III	Relational Algebra, Relational Calculus and SQL	Relational algebra- introduction, Selection and projection, set operations, renaming, Joins, Division, syntax, semantics. Operators, grouping and ungrouping, Relational comparison. Relational Calculus- Tuple relational calculus, Domain relational Calculus, calculus vs algebra, computational capabilities. Constraints, Views and SQL- What is constraints, types of constrains, Integrity constraints. Views- Introduction to views, data independence, security, updates on views, comparison between tables and views. SQL- data definition, Data types, DML and DML, Queries, aggregate function, Null Values, nested sub queries, Joined relations. Triggers. Use of RDBMS software like MS-Access, MySQL, MS-SQL server, Oracle, PostgreSQL.	12
IV	Transaction management and Concurrency Control	Transaction management, ACID properties, serializability and concurrency control, Lock based concurrency control (2PL, Deadlocks), Time stamping methods, optimistic methods, database recovery management.	12
	1	Total	48

Text Book:

- 1. Fundamentals of Database System, Elmasri and Navathe, 7th Edition, 2016, Pearson Education Asia
- 2. Database System Concepts, Henry F Korth, Abraham Silberschatz, 6th Edition, 2013, Mc Graw Hill.
- 3. Introduction to Database Management System, Atul Kahate, 1st Edition, 2004, Pearson Educations

4. DataBase Management System, Paneerselvam, 2nd Edition, 2011, PHI Learning

Reference Books:

- 1. C.J.Date, An Introduction to Database Systems, 8th Edition, 2003, Pearson Education Asia
- 2. Bibin C. Desai, An Introduction to Database Systems, Revised Edition, 2012, Galgotia Publications

Facilitating the Achievement of Course Learning Outcomes

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Learn about basic database related concepts. Have an insight on Relational Database Modeling and the Structured Query Language. Learn about Database Design including Normalization and Functional Dependencies. Have the understanding of the advanced topics like Query Optimization, Transaction Processing 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper IV/ Subject Name: Pattern Recognition		Subject Code: CAP054C204
L-T-P-C - 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To explain the design and construction and a pattern recognition system and the major approaches in statistical and syntactic pattern recognition.
- To provide an exposure to the theoretical issues involved in pattern recognition system design.
- To teach the working knowledge of implementing pattern recognition techniques and the scientific Python computing environment.

Prerequisites: Concepts of Data Mining and Digital Image Processing

Modules	Topics	Course content	Periods
I	Introduction	Pattern Recognition: Definition, Applications and Examples, Clustering Vs Classification, Supervised Vs Unsupervised, Basic of Linear Algebra, Vector Spaces, Basics of Probability, Basics of Estimation Theory, Decision Boundaries, Decision Regions, Metric Spaces	

TT	Classification	Pourse Desigion Dulas Error Drobability Examples Normal Distribution	12
11	Classification	Bayes Decision Rules, Error Probability, Examples, Normal Distribution,	12
		Linear Discriminant Function, Non-Linear Decision Boundaries, Mahalanobis	
		Distance, K-NN Classifier, Single and Multi Layer Perceptron, Training Set,	
		Test Set, Standardization and Normalization	
III	Clustering	Basics, Similarity/Dissimilarity Measures, Clustering Criteria, Different distance functions and similarity measures, within cluster distance criterion, K-means algorithm, Single linkage and complete linkage algorithms, MST,K-	12
		medoids, DBSCAN, Data sets: Visualization, Unique Clustering	
IV	Decision Making,	Baye's theorem, multiple features, decision boundaries, estimation of error	12
	Cluster Analysis and	rates, histogram, kernels, window estimators, nearest neighbour	
	Feature Extraction	classification, maximum distance pattern classifiers, adaptive decision boundaries. Unsupervised learning, hierarchical clustering, graph theories approach to pattern clustering, fuzzy pattern classifiers, application of pattern recognition in medicine. Structural PR, SVMs, FCM ,Soft-Computing and Neuro-Fuzzy Techniques, Real-Life Examples	
Total			48

Text Book:

- 1. Pattern Recognition and Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost, DSKT Edition, PHI
- 2. *Pattern Classification and Scene Analysis,* Duda & Hart, 1st Edition, Wiley

Reference Books:

- 1. K. Fukunaga , *Statistical pattern Recognition*, 2nd Edition, 2000, Academic Press
- 2. S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Edition, 2005, Academic Press.

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
•Learn the design and	i) Each topic to be expounded	(a) Participation in class
construction and a pattern	with adequate examples.	discussions
recognition system	ii) Class discussions and question-	(b)Continuous
 Understand the working 	answer rounds are encouraged	Evaluation(30Marks)
knowledge of implementing	iii) theoretical problems solving is	(i)15 marks on
pattern recognition techniques	part of the class to grasp the	Assignments
and the scientific Python	underlying concepts	🛽 Class tests.
computing environment.	iv) Students have to go through	viva-voce or presentation
Analyze the different features	case studies for real time	(ii) Mid-term examinations :10
extracted from datasets	experience	marks
	v) Students to be encouraged to	(iii) Class attendance -5 marks
	give short presentations.	(c) End-term examinations: 70
		marks.

Paper V/Subject Name: Advanced Computer Networks Lab

L-T-P-C - 0-0-4-2

Credit Units: 02

Subject Code: CAP054C211

Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To give students practical experience on the use of various devices as well as simulation tools for Have practical experience on the use of various devices as well as simulation tools for Computer Networking.
- To provide a practical experience on the implementation on various protocols of Computer Networks.
- To teach the analysis of the performance of the protocols in different layers.
- To give a practical experience on the analysis of various routing algorithms.

Prerequisites: None

Detailed Syllabus:

2.

Minimum 10 Laboratory experiments based on the following-

- 1. Installation of Operating System, Installation of Utility Software and Applications.
 - Study of Local Area Network (LAN) with emphasis to the following-
 - 1. Study of different network cables and devices.
 - 2. Study of college LAN with references to network IP and design a LAN for it.
 - 3. Study of basic network command and network configuration command.
 - 4. Study of LAN transmission media's, topologies, interconnection devices & LAN standards.
 - 5. Implementation of Subnetting.
- 3. Token bus and token ring protocol to create scenario and study the performance of token bus and token ring protocols through simulation.
- 4. Case study of client/server scenario. Observing the difference between UDP and TCP servers. Study of Socket Programming and Client Server model.
- 5. To observe the working of TCP three-way hand-shaking procedure. Locating different packets like, SYN, SYN-ACK and ACK. Comparing different fields of these packets.
- 6. Write a program for Hamming Code generation for error detection and correction.
- 7. Using TCP/IP sockets, write a client-server program to make client sending the file name and the server to send back the contents of the requested file if present.
- 8. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 9. Write a code simulating ARP /RARP protocols.
- 10. Write a code simulating PING and TRACEROUTE commands.
- 11. Create a socket for HTTP for web page upload and download.
- 12. Write a program to implement RPC (Remote Procedure Call).

- 13. Applications using TCP Sockets like Echo client & echo server, Chat etc.
- 14. File Transfer Applications using TCP and UDP Sockets like DNS, SNMP, File Transfer.
- 15. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
- 16. Perform a case study about the different routing algorithms to select the network path with its optimum and economical during data transfer, like Link State routing, Flooding, Distance vector, etc.

Text Books:

- 1. Data Communications and Networking, Forouzan, 4th Edition, 2017, McGraw Hill Education.
- 2. *Computer Networks*, Andrew. S. Tanenbaum and David J. Wetherall, 5th Edition, 2013, Pearson Education India.
- 3. *Computer Networking: A Top Down Approach,* James F. Kurose, 6th Edition, 2017, Pearson Education.

Reference Books:

- 1. Sanjay Sharma, *Computer Networks*, 1st Edition, 2013, S. K. Kataria & Sons.
- 2. Forouzan, Computer Networks: A Top Down Approach, 1st Edition, 2017, McGraw Hill Education.
- 3. Narasimha Karumanchi, *Elements of Computer Networking: An Integrated Approach*, 1st Edition, 2017, Careermonk Publications.
- 4. Peterson, *Computer Networks A System Approach*, 5th Edition, 2011, Elsevier.

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Know about different Network components. Learn about client-server programming Learn and differentiate between TCP and UDP servers Learn about network simulators. 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.

Paper VI/ Subject Name: Advanced Database Management Systems Lab Subject Code: CAP054C212

L-T-P-C - 0-0-4-2

Credit Units: 02

Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To provide in-depth knowledge on database concepts.
- To teach the concepts of relational data model.
- To impart practical to experience designing and constructing data models and using SQL to interface to both multi-user DBMS packages and to desktop DBMS packages.
- To explain the usage of DDL and DML commands in RDBMS.
- To make the students practice advanced concepts in databases, like High Level Language Extensions with cursors, triggers, procedures and functions.

Prerequisites: Concepts of Computer Programming and Data Structures

Detailed Syllabus:

Minimum 20 Laboratory experiments based on the following-

- 1. DDL Commands in RDBMS, DML Commands in RDBMS
- 2. High Level Language Extensions with Cursors.
- 3. High Level Language Extensions with Triggers
- 4. Procedures and Functions.
- 5. Embedded SQL
- 6. Database Design using ER model and Normalization.
- 7. A full-fledged case study for designing of a DBMS for an information system.

Text Book:

- 1. Fundamentals of Database System, Elmasri and Navathe, 7th Edition, 2016, Pearson Education Asia
- 2. Database System Concepts, Henry F Korth, Abraham Silberschatz, 6th Edition, 2013, Mc Graw Hill.
- 3. Introduction to Database Management System, Atul Kahate, 1st Edition, 2004, Pearson Educations
- 4. DataBase Management System, Paneerselvam, 2nd Edition, 2011, PHI Learning

Reference Books:

- 1. C.J.Date, An Introduction to Database Systems, 8th Edition, 2003, Pearson Education Asia
- 2. Bibin C. Desai, An Introduction to Database Systems, Revised Edition, 2012, Galgotia Publications

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Have a practical review of the concepts of DDL and DML commands. Have a practical exposure to the usage of Cursors and Triggers. Have the practical experience of Procedures and functions, along with hands on experience with Embedded SQL. Have the practical experience of a real life information system's DBMS design, as well as know how to tackle the challenges faced during such a real life project. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation: 25% (Skill Test, lab copy, viva, lab involvement: Any Three) Attendance: 5% End term examination: 70%

Paper VIII / Subject Name: Individual and Intrapersonal BehaviourSubject Code: BHS984A203L-T-P-C - 1-0-0-1Credit Units: 01Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To provide students with a platform to understand individual and interpersonal behavior within an organization, thus building insight into the dynamics of employee attitudes, satisfaction, conflict and power politics.

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Nature and Effects of Employee Attitudes	Nature of employee attitudes: job satisfaction, job involvement, organizational commitment, work moods Effects of employee attitudes: employee performance, turnover, absences and tardiness, theft, violence, other effects	3
II	Organizations and Individuals	Quality of work life, A rationale, Job enlargement versus job enrichment, Applying job enrichment, Core dimensions: A job characteristics, Approach, Enrichment versus motivation, Social cues affect perceptions, Contingency factors affecting enrichment, Individual's responsibilities to the organization, Organizational citizenship, Dues-Paying, Blowing the whistle on unethical behaviour, Mutual trust	3
III	Conflict in Organization	The nature of conflict, Levels of conflict, Sources of conflict, Effects of conflict	3
IV	Assertive Behaviour, Power, politics	Assertive behavior: interpersonal orientations, facilitating smooth relations, stroking Power and Politics: types of power, effects of power bases, organizational politics, influence and political power	3
	<u> </u>	Total	12

Text Books:

1. Organizational Behaviour: Human behavior at work, Newstrom, J. W., 2007, Tata McGraw-Hill, New Delhi.

Reference Books:

1. Robbins, S. P., Judge, T. A. & Sanghi, S., *An Essentials of Organizational Behaviour*, 2010, Dorllings Kindersley, India

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
•Understand individual and	i) Each topic to be expounded with	(a) Participation in class discussions
interpersonal behavior within an	adequate examples.	(b)Continuous Evaluation(30Marks)
organization, thus building insight	ii) Class discussions and question-	(i)15 marks on
into the dynamics of employee	answer rounds are encouraged	Assignments
attitudes, satisfaction, conflict and	iii) theoretical problems solving is	I Class tests.
power politics.	part of the class to grasp the	viva-voce or presentation
	underlying concepts	(ii) Mid-term examinations :10
	iv) Students have to go through case	marks
	studies for real time experience	(iii) Class attendance -5 marks
	v) Students to be encouraged to give	(c) End-term examinations: 70
	short presentations.	marks.

Paper IX/ Subject Name: : Bus	ness Environment and Communication	Subject Code: CEN984A201
L-T-P-C – 1-0-0-1	Credit Units: 01	Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To give a comprehensive view of corporate communication, cross cultural communication by engaging them to meaningful discussion and interactive activities

Prerequisites: Basic understanding of communication in organizations.

Modules	Topics	Course content	Periods
I	Corporate Communication	Focus areas of Corporate Communication, Crisis Communication (Conceptual understanding, Dealing with a Crisis, Role of Internal Communication in handling Crisis), Cross Cultural Communication (Understanding Culture, Workplace Culture, Culture and Non-Verbal, Managing Global Teams)	3

II	Communication	Definition, Understanding Team and Group, Stages of Group Formation	3
	in Teams	, Johari Window and Team Communication, Roles in a Team,	
		Advantages and Challenges of Working in a Team, Essential Facts about	
		being a part of a Team, Types of Teams, Team Conflicts	
III	Business	Constituents of Etiquettes and Importance, Conduct at the workplace,	3
	Etiquettes Cross	Dining and gifts, Meeting, Customers and clients, Business Etiquettes	
	Cultural	and Modern Technology, Communicating in a Diverse Work	
	Communication	Environment - Concepts of Culture, Cultural Nuances -Hierarchy &	
		Status, Individualism and Teamwork, Punctuality, Technology, cultural contexts	
		International Communication - Proverbs and Culture, Intercultural	
		Communication and the Workplace, Cultural Conflicts, Resolving Cultural Conflicts	
IV	Improving	Depart Whiting Importance and use Characteristics of Departs	3
1 V	Improving Technical	Report Writing - Importance and use, Characteristics of Reports. Categories of Reports, Formats, Prewriting, Structure of Reports	э
	Writing Skills	(Manuscript format), Types of Reports, Writing the Report	
		Total	12

Text Books:

1. Business Communication for Managers, Mehra, Payal, 1st Impression, 2012, Dorling Kindersley (India) Pvt. Ltd.

Reference Books:

- 1. Mukherjee, Hory Sankar, *Business Communication: Connecting At Work*, 1st Edition, 2013, Oxford University Press.
- 2. Verma, Shalini, *Business Communication: Essential Strategies for Twenty-first Century Managers*, 2nd Edition, 2014, Vikas Publishing House Pvt. Ltd.

Learning Outcomes	Teaching and Learning	Assessment Tasks
	Activity	
	i) Each topic to be expounded	(a) Participation in class
•Know communication skills	with adequate examples.	discussions
required in corporation and	ii) Class discussions and	(b)Continuous
work as a team, comprehend	question- answer rounds are	Evaluation(30Marks)
cross cultural communication	encouraged	(i)15 marks on
and improve their technical	iii) theoretical problems solving	Assignments
writing skills.	is part of the class to grasp the	🛛 Class tests.
	underlying concepts	viva-voce or presentation
	iv) Students have to go through	
	case studies for real time	(ii) Mid-term examinations :10
	experience	marks
	v) Students to be encouraged to	(iii) Class attendance -5 marks
	give short presentations.	(c) End-term examinations: 70
		marks.

9. Detailed Syllabus of Semester-III

PaperI/ Subject Name: Design and Analysis of Algorithms		Subject Code: CAP054C301
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To teach the fundamental algorithms
- To explain how to analyse the performance of algorithms
- To teach the fundamental algorithmic design strategies

Prerequisites: Fundamentals of Data Structures and Basic Mathematics

Detailed Syllabus:

Modules	Topics	Course content	Periods
Ι	Introduction	Fundamental characteristics of an algorithm. Basic algorithm analysis – Asymptotic analysis of complexity bounds – best, average and worst- case behaviour, standard notations for expressing algorithmic complexity. Empirical measurements of performance, time and space trade-offs in algorithms. Using recurrence relations to analyse recursive algorithms – illustrations using recursive algorithms.	12
II	Fundamental Algorithm Strategies	Brute-Force, Greedy, Branch-and-Bound, Backtracking and Dynamic Programming methodologies as techniques for design of algorithms – Illustrations of these techniques for Problem-Solving. Heuristics – characteristics and their domains of applicability. Design of algorithms for String/ Texmatching problems, Huffman Code and Data compression problems, Subset-sum and Knapsack problems.	12

III	Graph and Tree Algorithms	Depth- and Breadth- First traversals. Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sort, Network Flow problems.	12
IV	Tractable and Intractable Problems	Computability. The Halting problem. Computability classes – P, NP, NP- complete and NP-hard. Cook's theorem. Standard NP complete problems Reduction techniques.	12
		Approximation algorithms, Randomized algorithms, Class of problems beyond NP – PSPACE.	
	I	Total	48

Text Book:

1. *Introduction to Algorithms,* T. H. Cormen, C. E. Leiserson, R. L. Rivest, 3rd Edition, 2009, The MIT Press, Cambridge, Massachusetts.

Reference Books:

- 1. Aho, Hopcroft & Ullman, *The Design and Analysis of Algorithms*, Addison-Wesley
- 2. Horowitz & Sahani, Fundamentals of Algorithms, 2nd Edition, 2009, Galgotia Publications

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Describe the major modern algorithms and selected techniques that are essential to today's computers. Decide on the suitability of a specific algorithm design technique for a given problem. Apply the algorithms and design techniques to solve problems, and mathematically evaluate the quality of the solutions. 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.

Paper II/ Subject Name: Web Technologies

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To give students an introduction to the Internet and Web Page Design.
- To provide detailed concepts on Web Browsers, Markup Language Basics and XML.
- To impart detailed concepts on Web Server Side technologies.
- To give students exposure to some Advanced Web Technologies and the Web Security.

Prerequisites: Fundamentals of Computer Programming

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction to Internet and Web Page Design	Internet basics: History and basic idea of Internet; Internet services: telnet, e-mail, ftp, WWW. Web page design: Designing web pages with HTML- use of tags, hyperlinks, URLs, tables, text formatting, graphics & multimedia, imagemap, frames and forms in web pages. Use of Cascading Style Sheet in web pages. Creating interactive and dynamic web pages with JavaScript: JavaScript overview; constants, variables, operators, expressions & statements; user-defined & built-in functions; client- side form validation; using properties and methods of built-in objects.	12
II	Web Browsers, Markup Language Basics and XML	Web Browsers: functions and working principle of web browsers; plug-ins & helper applications; conceptual architecture of some typical web browsers. Markup language basics: Standard Generalized Markup Language (SGML)- structures, elements, Content models, DTD, attributes, entities. Extensible Markup Language (XML): Introduction- using user-defined tags in web pages; displaying XML contents; XML DTDs; use of XSL.	12
III	Web Server Side	Introduction to Client/Server Computing: client-server computing basics; types of Client/Server systems; middleware; N-tired systems: 2-tier/3-tier/4-tier systems; Fat Clients versus Fat Servers.Web Servers: Web services and web server functionality; web server composition; registration; HTTP, IP address, DNS & ports; conceptual architecture of some typical web servers. Server-side scripting: overview of CGI, ASP, and JSP. Server side scripting using PHP; PHP basics, HTML form data handling, Web database connectivity- introduction to ODBC; PHP with database connectivity.	12

IV	Advanced Web Technologies and Web Security	Exposure to Advanced Web Technologies: Distributed Object based models- DCOM, CORBA, EJB; Web services and Related Technologies- ISAPI, SOAP, UDDI, WSDL; Other Advanced Web Technologies- AJAX, ISAPI, .NET. Web Security: Firewalls- definition and uses, network layer firewalls and application layer firewalls; Proxy servers, HTPS for secure web communication.	12
		Total	48

Text Book:

1. *Web Technologies,* Godbole and Khate, 3rd Edition, 2017, McGraw Hill Education.

Reference Books:

- 1. Kogent Learning Solutions Inc., *Web Technologies: HTML, Javascript, PHP, Java, JSP, XML and AJAX, Black Book,* 1st Edition, 2009, Dreamtech Press.
- 2. Uttam K. Roy, *Web Technologies*, 1st Edition, 2010, Oxford.
- 3. N. P. Gopalan and J. Akilandeswari, *Web Technology: A Developer's Perspective*, 2nd Edition, 2014, Prentice-Hall of India Pvt. Ltd.
- 4. Jackson, *Web Technologies: A Computer Science Perspective*, 1st Edition, 2007, Pearson Education India.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks	
 Analyze a web page and identify its elements and attributes. Create web pages using HTML and Cascading Style Sheets. Build dynamic web pages using JavaScript (Client 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation 	
 side programming). Create XML documents and Schemas. Build interactive web applications using AJAX. 	iv) Students have to go through case studies for real time experiencev) Students to be encouraged to give short presentations.	 (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks. 	

Paper III / Subject Name: Advanced Software Engineering Subject Code: CAP054C303

L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To explain the basics and life cycle of software engineering.
- To discuss different system process models
- To explain the basic concepts of software testing.

• To make the students understand about testing and test cases

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction	Introduction to Software Engineering, Defining Software, Changing Nature of Software, attributes of a good Software, Software Product, Software Development Life Cycle, Software Processes, Software Engineering Practices, Software Myths	12
II	System Process Models	Generic Process Model (Defining Framework Activity, Identifying Task Set), Process Assessment & Improvement, Waterfall Process Model, Incremental Process Model, Spiral Process Model, Prototyping Software Process Model, Evolutionary Process Model, Component Based Process Model, Introduction to basic concepts of Agile Software Development	12
III	Types of Testing and Test Cases	Model, Introduction to basic concepts of Agile Software DevelopmentDynamic Testing: Black Box Testing, White box testing, Grey box	
IV	Test Strategy and Execution	Learn Test Execution Life Cycle Process, Understand Different levels of Test Execution, Sanity/ Smoke Testing, Test Batches or Test Suite Preparation and Execution, Retesting, Regression Testing, What is Bug Leakage, Test Design. What is Test Plan?, Contents of test plan, Master test plan and testing level test plan, Entry and Exit criteria, Test Coverage, Test Responsibilities, Adhoc testing, Exploratory Testing General risks in test environment	12
		Total	48

Text Books:

- 1. Fundamentals of Software Engineering, Rajib Mall,, Prentice Hall of India
- 2. Software Testing, Patton, Ron, 5th Edition, 2005 Pearson Education
- 3. *Software Testing: Principles and Practices,* Desikan, Srinivasan, Gopalaswamy, Ramesh, 1st Edition, 2005, Pearson Education

Reference Books:

1. Jalote, Pankaj, *An Integrated Approach To Software Engineering*, 3rd Edition, 2005, Narosa Publishing House.

Facilitating the Achievement of Course Learning Outcomes

1. Explain various phases of software development lifecyclei) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged(a) Participation in cl discussions (b)Continuous2. Analyze and document the requirement specifications for aquestion- answer rounds are encouraged(a) Participation in cl discussions (b)Continuous	1
 iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students to be encouraged to give short presentations. iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students to be encouraged to give short presentations. 	s) entation nations :10 e -5 marks

PaperIV/Subject Name: Design and Analysis of Algorithm Lab		Subject Code: CAP054C311
L-T-P-C - 0-0-4-2	Credit Units: 02	Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To teach the fundamental algorithms
- To explain how to analyze the performance of algorithms
- To teach the fundamental algorithmic design strategies

Prerequisites: Concepts of Computer Programming and Data Structures

Detailed Syllabus:

Minimum 20 Laboratory experiments based on the following-

- 1. Implementation of different sorting algorithms.
- 2. Implementation of KRUSKAL ALGORITHM.
- 3. Implementation of PRIM'S ALGORITHM
- 4. Implementation of KNAPSACK PROBLEM
- 5. Implementation of MULTISTAGE GRAPH
- 6. Implementation of ALL PAIR SHORTEST PATH ALGORITHM
- 7. Implementation of EIGHT QUEEN PROBLEM
- 8. Implementation of TRAVELING SALES MAN Problem

Text Book:

1. *Introduction to Algorithms,* T. H. Cormen, C. E. Leiserson, R. L. Rivest, 3rd Edition, 2009, The MIT Press, Cambridge, Massachusetts.

Reference Books:

- 1. Aho, Hopcroft & Ullman, The Design and Analysis of Algorithms, Addison-Wesley
- 2. Horowitz & Sahani, Fundamentals of Algorithms, 2nd Edition, 2009, Galgotia Publications

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Describe the major modern algorithms and selected techniques that are essential to today's computers. Decide on the suitability of a specific algorithm design technique for a given problem. Apply the algorithms and design techniques to solve problems, and mathematically evaluate the quality of the solutions. 	 i) Familiarization with essential tools, language and software has been inducted ii) Related concept are discussed before each practical iii) student are encourage to take up real problem and solve in group iv) Case study and its practical implementation is a part of the curriculum v) Students to be encouraged to take up software development in related fields 	 (a) Participation in Practical Assignments (b)Continuous Evaluation(30Marks) (i)15 marks on I Lab Assignments viva-voce (ii) Skill Test crries:10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.

Paper V/ Subject Name: Web Technologies LabSubject Code: CAP054C312L-T-P-C - 0-0-4-2Credit Units: 02Scheme of Evaluation: P

Objective:

The objectives of the course are:

- To give students a practical introduction to the Internet and Web Page Design.
- To explain practical concepts on Web Browsers, Markup Language Basics and XML.
- To teach concepts on Web Server Side technologies.
- To give students hands-on exposure to some Advanced Web Technologies and the Web Security.

Prerequisites: Computer Programming Fundamentals

Detailed Syllabus:

Minimum 10 Laboratory experiments based on the following-

- 1. Web page design: Designing web pages with HTML- use of tags, hyperlinks, URLs, tables, text formatting, graphics & multimedia, imagemap, frames and forms in web pages.
- 2. Use of Cascading Style Sheet in web pages.
- 3. Creating interactive and dynamic web pages with JavaScript: JavaScript overview; constants, variables, operators, expressions & statements; user-defined & built-in functions; client-side form validation; using properties and methods of built-in objects.
- 4. Extensible Markup Language (XML): Introduction- using user-defined tags in web pages; displaying XML contents; XML DTDs; use of XSL.
- 5. Server-side scripting: overview of CGI, ASP, and JSP.
- 6. Server side scripting using PHP; PHP basics, HTML form data handling, Web database connectivityintroduction to ODBC; PHP with database connectivity.
- 7. Exposure to Advanced Web Technologies (as far as possible; not to be made compulsory): Distributed Object based models- DCOM, CORBA, EJB; Web services and Related Technologies- ISAPI, SOAP, UDDI, WSDL; Other Advanced Web Technologies- AJAX, ISAPI, .NET. Web Security.

Text Book:

1. *Web Technologies,* Godbole and Kahate, 3rd Edition, 2017, McGraw Hill Education.

Reference Books:

- 1. Kogent Learning Solutions Inc., *Web Technologies: HTML, Javascript, PHP, Java, JSP, XML and AJAX, Black Book,* 1st Edition, 2009, Dreamtech Press.
- 2. Uttam K. Roy, *Web Technologies*, 1st Edition, 2010, Oxford.
- 3. N. P. Gopalan and J. Akilandeswari, *Web Technology: A Developer's Perspective*, 2nd Edition, 2014, Prentice-Hall of India Pvt. Ltd.
- 4. Jackson, *Web Technologies: A Computer Science Perspective*, 1st Edition, 2007, Pearson Education India.

detail using various client sidetools , language and softwareAssigand server side scripting.has been inductedAssig	rticipation in Practical ments
•Learn CSS.ii) Related concept are discussed before each practical iii) student are encourage to take up real problem and solve 	ill Test crries:10 marks ass attendance -5 marks d-term examinations: 70

Pan	er VIII/	Subject Name	Kinesics and	Effective	Communication
rup	ci viii)	Subject Name	i minesies and	LIICCUVC	communication

Subject Code: CEN984A301

L-T-P-C - 1-0-0-1

Credit Units: 01

Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To enhance communication skills by giving adequate exposure in Non-verbal communication, conversation skills, group discussions and other related skills.

Prerequisites: Basic awareness of tools of communication.

Detailed Syllabus:

Modules	Topics	Course content	Hours
I	Non-verbal Communication	Kinesic Communication, Characteristics of non-verbal communication, Classification of non-verbal communication (Ekman's classification of communicative movements, face facts, positive genres, negative genres, lateral genres, Responding to power posturing, Guidelines for developing non-verbal communication, Communication breakdown	8
II	Conversations, Dialogues and Debates	Purpose of general conversation (Tips and features of good conversation), Short conversations, Telephonic skills, Situational Dialogues and Role plays	11
III	CVs, Personal Interviews and Group Discussions	Applying for jobs, Writing a CV, The relationship between a Resume and an Application Letter, Guidelines for preparing a good CV, Guidelines for preparing a good application letter, Interviews, Group Discussion – Practical	14
IV	Developing Reading Skills	Introduction, Purpose of reading, Soft skills for reading, Reading Comprehension: types of texts, Reading Practice	6
	1	Total	39

Text Books:

1. *Business Communication: Concepts, Cases and Applications,* Chaturvedi, P.D. and Chaturvedi, Mukesh, 2nd Edition, 2011, Dorling Kindersley (India)Pvt. Ltd, pp: 99-108, 217-230

Reference Books:

1. Kumar, Sanjay and Lata, Pushp, *Communication Skills: A Workbook*, 1st Edition, Oxford University Press, pp: 329-348.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks	
Have a sound knowledge of non-	i) Each topic to be expounded with	(a) Participation in class discussions	
verbal communication and develop	adequate examples.	(b)Continuous Evaluation(30Marks)	
skills like Conversation, Group	ii) Class discussions and question-	(i)15 marks on	
discussions and Reading skills	answer rounds are encouraged	Assignments	
	iii) theoretical problems solving is	🛛 Class tests.	
	part of the class to grasp the	the 🛛 viva-voce or presentation	
	underlying concepts	(ii) Mid-term examinations :10	
	iv) Students have to go through case	marks	
	studies for real time experience	(iii) Class attendance -5 marks	
	v) Students to be encouraged to give	(c) End-term examinations: 70	
	short presentations.	marks.	

10. Detailed Syllabus of Department Specific Electives

ELECTIVE-I			
Paper VII/Subject Name: Da	ta Science using R	Subject Code: CAP054D401	
L-T-P-C - 3-1-0-4	Credit Units: 04	Scheme of Evaluation: T	
Objective:			
The objectives of the course an	re:		

- To introduce the mathematical foundations required for data science.
- To explain the first level data science algorithms and a data analytics problem solving framework
- To introduce a practical capstone case study
- To teach R and Python as a tool for Data Analytics technique

Prerequisites: Basic concepts of Mathematics, Computer Programming, Data Structures and Databases

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction	Introduction to Data Science , Data Analytics, Big Data ,Areas and Application of Data Sciences, Mathematical foundation of Data Science , descriptive statistics, notion of probability, distributions, mean, variance, covariance, covariance matrix, understanding univariate and multivariate normal distributions, introduction to hypothesis testing, confidence interval for estimates ,Statistical Inference:, Introduction to R and Python : Import –Export functions, DPLYR functions , Data Visualization .	12
II	Algorithms for Data Sciences	Introduction to machine learning, Linear regression and regularization, Model selection and evaluation, Classification: kNN, decision trees, Classification: SVM, Ensemble methods: random forests, Intro to probability: Naïve Bayes and logistic regression, Clustering: k-means, hierarchical clustering	12
III	Recommendation Systems	Algorithms for Recommendation Engine, Dimensionality Reduction, Singular Value Decomposition, Principal Component Analysis , Case Study	12
IV	Information retrieval and Data Visualization	Text mining and information retrieval :Mining Social-Network Graphs, Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs ,Partitioning of graphs, Neighbourhood properties in graphs ,Data Visualization, Basic principles, ideas and tools for data visualization	12
Total			48

Text Book:

1. *Doing Data Science, Straight Talk From The Frontline*, Cathy O'Neil and Rachel Schutt, 1st Edition, 2014, O'Reilly

Reference Books:

- 1. James, G., Witten, D., Hastie, T., Tibshirani, R., *An introduction to statistical learning with applications in R*, 7th Edition, 2014, Springer.
- 2. Murphy, K, Machine Learning, A Probabilistic Perspective, 2012, MIT Press.
- 3. Mohammed J. Zaki and Wagner Miera Jr., *Data Mining and Analysis: Fundamental Concepts and Algorithms*, 1st Edition, 2014, Cambridge University Press.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
On completion of this course the	• Each topic to be explained with	• Participation in class
students will be expected to:	examples.	discussions
• Identify a flow process for	• Students to be motivated to	Continuous
data science problems	discover the relevant concepts to	Evaluation(30Marks)
 Classify data science 	take part in discussions and ask	(i)15 marks on

Paper VII/Subject Name: Distributed Systems		Subject Code: CAP054D102
L-T-P-C - 3-1-0-4 Cr	redit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To give students an introduction to the characteristics of distributed systems.
- To provide an exposure to processor arrays and multiprocessor multi-computers
- To impart the idea of the distributed architectures, examples of DS and also difference between parallel computing and distributed computing.
- To give students the understanding of transaction processing in distributed manner.

Prerequisites: Concepts of Computer Communication Networks

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction to Distributed Systems,	Computational Demand of Modern Science, Parallel Processing Terminology – Contrasting Pipelining and Data Parallelism, Control	12
	Processor Arrays and Multi-Computers	Parallelism Scalability, Control-Parallel Approach, Data Parallel Approach Data-Parallel Approach with I/O. Processor Organization,	
		Processor Arrays, Multiprocessors, Multi-computers, Flynn's Taxonomy, Speedup, Scaled Speedup, Parallelizability, Problems Defying Fast Solutions on PRAMS.	
II	Distributed Systems and Deadlock	Examples of Distributed Systems, Difference between Parallel and Distributed systems, Resource Sharing and the Web, Architectural, Models, Fundamental Models, Limitation of Distributed system, Absence of Global Clock, Shared Memory, Logical clocks, Lamport's& Vectors Logical locks.	12

		Deadlock, System Model, Resource Vs Communication Deadlocks, Deadlock Prevention, Avoidance, Detection & Resolution, Centralized Dead Lock Detection, Distributed Dead Lock Detection, Path Pushing Algorithms, Edge Chasing Algorithms.	
III	Agreement Protocols	Classification of Agreement Problem, Byzantine Agreement Problem, Consensus Problem, Interactive Consistency Problem, Solution to Byzantine Agreement Problem, Application of Agreement Problem, Atomic Commit in Distributed Database System., Design Issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory	16
IV	Distributed Transaction And Recent Research Trends	Flat and Nested Distributed Transactions, Atomic Commit Protocols, Concurrency Control in Distributed Transactions, Distributed Deadlocks, Transaction Recovery, Replication: Group Communication Fault - Tolerant Services, Highly Available Services, Transactions with Replicated Data, Topics on Recent Research Trends.	8
	·	Total	48

Text Book:

1. *Distributed System: Concepts and Design*, Coulouris, Dollimore, Kindberg, 5th Edition, 2011, Pearson Education.

Reference Books:

1. Tanenbaum, A. S, *Distributed Systems Principles and Paradigms*, 2nd Edition, 2015, PHI.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Identify the advantages and challenges in designing distributed algorithms for different primitives like mutual exclusion, deadlock detection, agreement, etc. Design and develop distributed programs using sockets and RPC/RMI. Differentiate between different types of faults and fault handling techniques in order to implement fault tolerant systems. Analyze different algorithms and techniques for the design and development of distributed systems subject to specific design and performance constraints. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VII/Subject Name: Natural Language Processing

Subject Code: CAP054D103

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To provide the student with knowledge of various levels of analysis involved in NLP.
- To understand language modeling,
- To gain knowledge in automated natural language generation and machine translation

Prerequisites: Concepts of Automata Theory

Detailed Syllabus:

Modules	Topics	Course Contents	Hours
I	Overview and Language Modeling	8 · · · · 8 · · · · · · · · · · · · · ·	
II	Word Level, Syntactic and Semantic Analysis	Word Level Analysis: Introduction- Regular Expressions-Finite-State Automata-Morphological Parsing-Spelling Error Detection and correction-Words and Word classes-Part-of Speech Tagging. Syntactic Analysis: Introduction-Context-free Grammar-ConstituencyParsing- Probabilistic Parsing Semantic Analysis: Introduction- Meaning Representation-Lexical SemanticsAmbiguity-Word Sense Disambiguation. Discourse Processing: Introduction- cohesion-Reference ResolutionDiscourse Coherence and Structure	9
III	Natural Language Generation and Machine Translation	Natural Language Generation: Introduction-Architecture of NLGSystemsGeneration Tasks and Representations-Application of NLG.Machine Translation: Introduction-Problems in MachineTranslationCharacteristics of Indian Languages- Machine TranslationApproaches-Translation involving Indian Languages	
IV	Information Retrieval and Lexical Resources	Information Retrieval: Introduction-Design features of Information Retrieval Systems-Classical, Non-classical, Alternative Models of Information Retrieval - Evaluation Lexical Resources: Introduction-WordNet-FrameNet-Stemmers-POS TaggerResearch Corpora	9
TOTAL			

Text Books:

1. *Natural Language Processing and Information Retrieval*, Tanveer Siddiqui, U.S. Tiwary, 1st Edition, 2008, Oxford University Press

Reference Books:

- 1. Daniel Jurafsky and James H Martin, *Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition*, 2nd Edition, 2008, Prentice Hall.
- 2. James Allen, Bejamin Cummings, *Natural Language Understanding*, 2nd Edition, 1995, Pearson.

Facilitating the Achievement of Course Learning Outcomes

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Appreciate the fundamental concepts of Natural Language Processing. Design algorithms for NLP tasks. Develop useful systems for language processing and related tasks involving text processing 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VII/Subject Name: Neural Networks and Fuzzy Logic

Subject Code: CAP054D104

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

• To teach the concepts of artificial neural networks

- To explain the basic theory and algorithm formulation of Fuzzy logic.
- To describe real world problems

Prerequisites: Concepts of Artificial Intelligence and Mathematics

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction	Biological neurons and McCulloch and Pitts models of neuron, Types of activation functions, Neural networks architectures, Linearly separable and linearly non-separable systems and their examples, Features and advantages of neural networks over statistical techniques, Knowledge representation, learning process, error- correction learning, concepts of supervised learning, and unsupervised learning, Applications of Neural Networks	12
II	Supervised and Unsupervised Learning Neural Networks	 Single layer perception and multilayer perceptron neural networks, their architecture, Error back propagation algorithm, generalized delta rule, learning factors, step learning, Momentum learning, Concept of training, testing and cross-validation data sets for design and validation of the networks. Competitive earning networks, kohonen self-organizing networks, K-means and LMS algorithms, RBF neural network, its structure and Hybrid training algorithm for RBF neural networks, Comparison of RBF and MLP networks Learning, Vector Quantization neural network architecture and its training algorithm, Hebbian learning, Hopfield networks. 	12
III	Fuzzy Logic	Basic Fuzzy logic theory, sets and their properties, Operations on fuzzy sets, Fuzzy relation and operations on fuzzy relations and extension principle, Fuzzy membership functions and linguistic variables, Fuzzy rules and fuzzy reasoning, Fuzzification and defuzzification and their methods, Fuzzy inference systems, Mamdani Fuzzy models, and Fuzzy knowledge based controllers	12
IV	Applications of Fuzzy Logic and Fuzzy Systems	Fuzzy pattern recognition, Fuzzy image processing, Simple applications of Fuzzy knowledge based controllers like washing machines, traffic regulations, and lift control	12
	1	Total	48

Text Books:

- 1. *Neural Networks, Fuzzy Logic, and Genetic Algorithms*, Rajsekaran and G. A. Vijaylakshmi Pai, 1st Edition, 2003, PHI
- 2. Neural Network- A Comprehensive Foundation, Simon Haykin, 2nd Edition, 9th Reprint, 2005, Pearson Education

Reference Books:

- 1. Timothy J. Ross, *Fuzzy Logic with Engineering Applications*, 3rd Edition, 2010, Wiley India Publications
- 2. Laurence Fausett, *Fundamentals of Neural Networks*, 1st Edition, 2004, Pearson Education
- 3. S. N. Sivanandam, S. Sumathi, and S. N. Deepa, *Introduction to Neural Network Using MATLAB*, 1st Edition, 2012, Tata McGraw-Hill Publications

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Know about different neural networks, their architecture and training algorithm. Learn the concept of Fuzzy logic, Fuzzy Sets, fuzzy rules and fuzzy reasoning Get exposed to the applicability of neural networks and fuzzy logic 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70
		marks.

ELECTIVE-II				
Paper VII/Subject Name: BioinformaticsSubject Code: CAP054D201				
L-T-P-C – 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T		
Objective:				

The objectives of the course are:

- To improve the programming skills of the student.
- To let the students know the recent evolution in biological science

Prerequisites: Fundamentals of Databases and Data Mining

Detailed Syllabus:

Modules	Topics	Course content	
I	Introduction to Bioinformatics and Computational Biology	Biological sequences, Biological databases, Genome specific databases, Data file formats, Data life cycle, Database management system models, Basics of Structured Query Language (SQL).	
II	Dynamic Programming Algorithms	Sequence Analysis, Pairwise alignment, Dynamic programming algorithms for computing edit distance, string similarity, shotgun DNA sequencing, end space free alignment. Multiple sequence alignment, Algorithms for Multiple sequence alignment, Generating motifs and profiles, Local and Global alignment, Needleman and Wunsch	

		algorithm, Smith Waterman algorithm, BLAST, PSIBLAST and	
III	Phylogenetics	PHIBLAST algorithms. Introduction to phylogenetics, Distance based trees UPGMA trees, Molecular clock theory, Ultrametric trees, Parsimonious trees, Neighbour joining trees, trees based on morphological traits, Bootstrapping. Protein Secondary structure and tertiary structure prediction methods, Homology modeling, abinitio approaches, Threading, Critical Assessment of Structure Prediction, Structural	12
IV	Machine Learning Techniques	genomics. Machine learning techniques: Artificial Neural Networks in protein secondary structure prediction, Hidden Markov Models for gene finding, Decision trees, Support Vector Machines. Introduction to Systems Biology and Synthetic Biology, Microarray analysis, DNA computing, Bioinformatics approaches for drug discovery, Applications of informatics techniques in genomics and proteomics: Assembling the genome, STS content mapping for clone contigs,Functional annotation, Peptide massFingerprinting	12
		Total	48

Text Book:

- 1. *Introduction to Bioinformatics*, Lesk, A. K., 4th Edition, 2013, Oxford University Press.
- 2. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, Gusfield, Dan, Cambridge University Press.

Reference Books:

1. Baldi, P, Brunak, S.; *Bioinformatics: The Machine Learning Approach*, 2nd Edition, 2001, MIT Press

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Develop bioinformatics tools with programming skills. Apply computational based solutions for biological perspectives. Practice life-long learning of applied biological science 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.

L-T-P-C – 3-1-0-4 Credit Units	: 04 Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To make the students understand the basic concepts of mobile computing.
- To make them familiar with the network protocol stack.
- To explain the basics of mobile telecommunication system.
- To provide an exposure to Ad-Hoc networks.
- To impart knowledge about different mobile platforms and application development

Prerequisites: Concepts of Computer Networks

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Introduction	Mobile Computing – Mobile Computing Vs wireless Networking – Mobile Computing Applications – Characteristics of Mobile computing – Structure of Mobile Computing Application. MAC Protocols – Wireless MAC Issues – Fixed Assignment Schemes – Random Assignment Schemes – Reservation Based Schemes.	12
II	Mobile Internet Protocol & Transport	Overview of Mobile IP – Features of Mobile IP – Key Mechanism in Mobile IP route Optimisation. Overview of TCP/IP – Architecture of TCP/IP- Adaptation of tCP Window-Improvement in TCP Performance.	12
III	Mobile Tele- communication	Global System for Mobile Communication (GSM) – General Packet Radio Service (GPRS) – Universal Mobile Telecommunication System (UMTS).	8
IV	Mobile AD-Hoc Networks, Mobile Platforms & Applications	Ad-Hoc Basic Concepts – Characteristics – Applications – Design Issues – Routing – Essential of Traditional Routing Protocols – Popular Routing Protocols – Vehicular Ad Hoc networks (VANET) – MANET Vs VANET – Security.Mobile Device Operating Systems – Special Constrains & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – MCommerce – Structure – Pros & Cons – Mobile Payment System – Security Issues.	16
		Total	48

Text Book:

- 1. *Wireless Network and Mobile Computing,* Koushik Sinha, Sasthi C Ghosh, Bhabani P. Sinha, 1st Edition, 2016, CRC Press
- 2. *Introduction to Wireless and Mobile Technology,* Dharma Prakash Agarval, Qing and An Zeng, 2nd Edition, 2006, Pearson Education

Reference Books:

- 1. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, *Principles of Mobile Computing*, 2nd Edition, 2002, Springer
- 2. C.K.Toh, Ad-hoc Mobile Wireless Networks, 1st Edition, 2015, Pearson Education.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Understand the basic concepts of mobile computing and the network protocol stack. Learn the basics of mobile telecommunication system and Ad-Hoc networks. Gain knowledge about different mobile platforms and application development 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VII/Subject Name: Soft Computing		Subject Code: CAP05D203
L-T-P-C - 4-0-0-4	Credit Units: 04	Scheme of Evaluation: T
The objectives of the cours	e are:	

- To make the students understand the basics of soft computing and fuzzy logic
- To give an idea of artificial neural networks and its applications
- To explain genetic algorithms with example
- Introduction to Rough set and understand different soft computing tools to solve real life problems.

Prerequisites: Basics of Digital Logic and Artificial Intelligence

Detailed Syllabus:

Modules	Topics	Course content	Periods
Ι	Soft Computing and Fuzzy Logic	Introduction- Overview of Soft Computing, Difference between Soft and Hard computing, Brief descriptions of different components of soft computing including Artificial intelligence systems Neural networks, fuzzy logic, genetic algorithms. Fuzzy sets and Fuzzy logic: Introduction, Fuzzy sets versus crisp sets, operations on fuzzy sets, Extension principle, Fuzzy relations and relation equations, Fuzzy numbers, Linguistic variables, Fuzzy logic, Linguistic hedges, Applications, fuzzy controllers, fuzzy pattern recognition, fuzzy image processing, fuzzy database.	12
II	Artificial Neural Network Genetic Algorithm	 Artificial Neural Network: Introduction, basic models, Hebb's learning, Adaline, Perceptron, Multilayer feed forward network, Back propagation, Different issues regarding convergence of Multilayer Perceptron, Competitive learning, Self-Organizing Feature Maps, Adaptive Resonance Theory, Associative Memories, Applications. Evolutionary and Stochastic techniques: Genetic Algorithm (GA), different operators of GA, analysis of selection operations, Hypothesis of building blocks, Schema theorem and convergence of Genetic Algorithm, Simulated annealing and Stochastic models, Boltzmann Machine, Applications. 	12
IV	Rough Set	Rough Set: Introduction, Imprecise Categories Approximations and Rough Sets, Reduction of Knowledge, Decision Tables, and Applications.	12
		Total	48

Text Books:

- 1. *Neural Fuzzy Systems*, Chin-Teng Lin & C. S. George Lee, Prentice Hall PTR.
- 2. Fuzzy Sets and Fuzzy Logic, Klir & Yuan, PHI, 1997.
- 3. *Neural Networks,* S. Haykin, Pearson Education, 2ed, 2001.
- 4. *Genetic Algorithms in Search and Optimization, and Machine Learning*, D. E. Goldberg, Addison-Wesley, 1989.

Reference Books:

- 1. Jang, Sun, & Mizutani, Neuro-Fuzzy and Soft Computing, PHI.
- 2. , V. Kecman, *Learning and Soft Computing*, MIT Press, 2001.
- 3. Z. Pawlak, *Rough Sets*, Kluwer Academic Publisher, 1991.

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Discuss the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience Relate with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems Describe with genetic algorithms and other random search procedures useful while seeking global optimum in self- learning situations Develop some familiarity with current research problems and research methods in Soft Computing Techniques. 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.

ELECTIVE-III

Paper VI/Subject Name: Artificial Intelligence

Subject Code: CAP054D301

L-T-P-C – 4-0-0-4

Credit Units: 04

Objective:

The objectives of the course are:

- To present an overview of artificial intelligence (AI) principles and approaches.
- To provide a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning.

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	
I	Introduction and Informed Search StrategiesWhat is intelligence? Foundations of artificial intelligence? (AI). History of AI; Problem Solving- Formulating problems problem types, states and operators, state space, search strategies.		12
		Best first search, A* algorithm, heuristic functions, Iterative deepening A*(IDA), small memory A*(SMA); Game playing - Perfect decision game, imperfect decision game, evaluation function, alpha-beta pruning	
II	Reasoning and Representation, Inference, Propositional Logic, predicate Planning Representation, Inference, Propositional Logic, predicate backward chaining; AI languages and tools - Lisp, Prolog, CLIPS		12
		Basic representation of plans, partial order planning, planning in the blocks world, hierarchical planning, conditional planning, representation of resource constraints, measures, temporal constraints	
III	Uncertainty and Inductive Learning	Basic probability, Bayes rule, Belief networks, Default reasoning, Fuzzy sets and fuzzy logic; Decision making- Utility theory, utility functions, Decision theoretic expert	20

		systems. Decision trees, rule based learning, current-best-hypothesis search, least-commitment search , neural networks, reinforcement learning, genetic algorithms; Other learning methods - neural networks, reinforcement learning, genetic algorithms.	
IV	Communication	Communication among agents, natural language processing, formal grammar, parsing, grammar	4
	I	Total	48

Text Book:

- 1. *Artificial Intelligence A Modern Approach,* Stuart Russell and Peter Norvig, 3rd Edition, 2009, Pearson Education Press
- 2. Artificial Intelligence, Kevin Knight, Elaine Rich, B. Nair, 3rd Edition, 2008, McGraw Hill

Reference Books:

- 1. George F. Luger, Artificial Intelligence, 6th Edition, 2009, Pearson Education
- 2. Nils J. Nilsson, Artificial Intelligence: A New Synthesis, 1st Edition, Morgan Kauffman

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Understand the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning. Have read and analyzed important historical and current trends addressing artificial intelligence. 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70
		marks.

Paper VI/Subject Name: Big Data Analytics

Subject Code: CAP054D302

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To give students an exposure to Apache Hadoop Architecture and Ecosystem.
- To provide concepts on HDFS and Map reduce.
- To explain querying data using Hive and Pig.
- To expose students to Real Time Databases using HBase.

Prerequisites: Concepts of Databases.

Detailed Syllabus:

Modules	Topics	Course content	Periods
Ι	Overview	Challenges to conventional database systems, Big Data Attributes,	9
		Operational and Analytical Big Data, Divers of Big Data, Data Structures, Big Data Ecosystems, Categories, 3V/ 4V models of Big	
		Data, Applications of Big Data, Challenges of Big Data, Big Data	
		Security, Big Data Generalization, and Acquisition	
II	Trends of	Big Data Computing Paradigm, High Performance Computing,	9
	Computing	Supercomputers, Clusters, Grid Computing, Cloud Computing,	
		Mobile Computing, Big Data Mining, Big Data Storage Techniques.	
	Die Data Taala	Interdention to Hedrey Auchitestance and Develotion of Hedrey	7
III	Big Data Tools, Techniques and	Introduction to Hadoop, Architecture and Foundation of Hadoop, HDFS, MapReduce, Framework of MapReduce, Processing of Data	/
	Systems	using MapReduce, Testing and Debugging MapReduce Application,	
	-	Users of MapReduce, YARN, HBASE, HIVE, Pig, Sqoop, Zookeeper,	
		Oozie	
IV	Big Data Models	SaaS, IaaS, PaaS, IoT and Big Data, Future of Bi Data Paradigm	11
Total			48

Text Book:

1. *Big Data Analytics with R and Hadoop,* VigneshPrajapati, 1st Edition, 2013, Packet Publishing.

Reference Books:

1. Benjamin Bengfort and Jenny Kim;,*Big Data Analytics with Hadoop: An Introduction for Data Scientists;*, 1st Edition, 2016, O'Reilly Media.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning	Assessment Tasks
	Activity	
 Identify Big Data and its 	i) Each topic to be expounded	(a) Participation in class
Business Implications.	with adequate examples.	discussions
•List the components of	ii) Class discussions and	(b)Continuous
Hadoop and Hadoop Eco-	question- answer rounds are	Evaluation(30Marks)
System.	encouraged	(i)15 marks on
 Access and Process Data on 	iii) theoretical problems solving	Assignments
Distributed File System.	is part of the class to grasp the	🛛 Class tests.
 Manage Job Execution in 	underlying concepts	viva-voce or presentation
Hadoop Environment.	iv) Students have to go through	
•Develop Big Data Solutions	case studies for real time	(ii) Mid-term examinations :10
using Hadoop Eco System.	experience	marks
 Apply Machine Learning 	v) Students to be encouraged to	(iii) Class attendance -5 marks
Techniques using R.	give short presentations.	(c) End-term examinations: 70
		marks.

ELECTIVE-IV

Paper VII/Subject Name: Cloud Computing

Subject Code: CAP054D303

L-T-P-C - 4-0-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To introduce the students the broad perceptive of cloud architectural model and the concept of Virtualization.
- To make students familiar with the lead players in cloud and understand the features of cloud simulator.
- To give students the concepts on applying different cloud programming model as per need and make them able to set up a private cloud.
- To make students understand the design of cloud Services and trusted cloud Computing system.

Prerequisites: Concepts of Networking and Distributed Systems

Detailed Syllabus:

Modules	Topics	Course content	
I	Cloud Architecture and Model	Technologies for Network-Based System, System Models for Distributed and Cloud Computing, NIST Cloud Computing Reference Architecture. Cloud Models- Characteristics, Cloud Services, Cloud models (IaaS, PaaS, SaaS), Public vs Private Cloud, Cloud Solutions, Cloud ecosystem, Service management, Computing on demand.	
II	Virtualization	Basics of Virtualization, Types of Virtualization, Implementation Levels of Virtualization, Virtualization Structures, Tools and Mechanisms, Virtualization of CPU, Memory, I/O Devices, Virtual Clusters and Resource management, Virtualization for Data-center Automation.	12
III	Cloud Infrastructure and Programming Model	Cloud Infrastructure- Architectural Design of Compute and Storage Clouds, Layered Cloud Architecture Development, Design Challenges, Inter Cloud Resource Management, Resource Provisioning and Platform Deployment, Global Exchange of Cloud Resources. Programming Model- Parallel and Distributed Programming Paradigms, MapReduce, Twister and Iterative MapReduce, Hadoop Library from Apache, Mapping Applications, Programming Support, Google App Engine, Amazon AWS, Cloud Software Environments, Eucalyptus, Open Nebula,	12

		OpenStack, Aneka, CloudSim.	
IV	Security in The Cloud And Recent Research Trends	Security Overview, Cloud Security Challenges and Risks, Software-as-a-Service Security, Security Governance, Risk Management, Security Monitoring, Security Architecture Design, Data Security, Application Security, Virtual Machine Security, Identity Management and Access Control, Autonomic Security.Topics on Recent Research Trends.	12
		Total	48

Text Book:

1. *Distributed and Cloud Computing, From Parallel Processing to the Internet of Things,* Kai Hwang, Geoffrey C Fox, Jack G Dongarra, 1st Edition, 2011, Morgan Kaufmann Publishers.

Reference Books:

1. Toby Velte, Anthony Velte and Robert Elsenpeter, *Cloud Computing, A Practical Approach*, 1st Edition, 2009, Tata McGraw Hill.

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
•Understand the fundamental	i) Each topic to be expounded	(a) Participation in class
principles of distributed	with adequate examples.	discussions
computing	ii) Class discussions and	(b)Continuous
•Understand the importance of	question- answer rounds are	Evaluation(30Marks)
virtualization in distributed	encouraged	(i)15 marks on
computing and how this has	iii) theoretical problems	☐ Assignments
enabled the development of	solving is part of the class to	\Box Class tests.
Cloud Computing	grasp the underlying concepts	□ viva-voce or presentation
•Understand the business	iv) Students have to go	-
models that underlie Cloud	through case studies for real	(ii) Mid-term examinations
Computing.	time experience	:10 marks
•Understand concepts of	v) Students to be encouraged	(iii) Class attendance -5 marks
IAAS, SASS, PAAS	to give short presentations.	(c) End-term examinations: 70
•		marks.

Paper VII/Subject Name: Cyber Forensics

Subject Code: CAP054D304

L-T-P-C - 3-1-0-4

Credit Units: 04

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To provide an understanding Computer forensics fundamentals.
- To explain various computer forensics technologies.
- To provide an understanding of the computer forensics systems.
- To teach methods for data recovery.
- To explain the methods for preservation of digital evidence.

Prerequisites: Fundamentals of Networking and Cryptography.

Detailed Syllabus:

Modules	dules Topics Course content		Periods
Ι	Computer Forensics Fundamentals	Introduction to Computer Forensics, Use of Computer Forensics in Law Enforcement, Computer Forensics Assistance to Human Resources/Employment Proceedings, Computer Forensics Services, Benefits of Professional Forensics Methodology.	
II	Forensics Technologies	Types of Military Computer Forensic Technology, Types of Law Enforcement: Computer Forensic Technology, Types of Business Computer Forensic Technology, Specialized Forensics Techniques, Hidden Data and How to Find It, Spyware and Adware. Encryption Methods and Vulnerabilities ,Protecting Data from Being Compromised ,Internet Tracing Methods ,Security and Wireless Technologies ,Avoiding Pitfalls with Firewalls ,Biometric Security Systems.	
III	Forensics Systems	Internet Security Systems, Intrusion Detection Systems, Firewall Security Systems, Storage Area Network Security Systems, Network Disaster Recovery Systems, Public Key Infrastructure Systems, Wireless Network Security Systems. Satellite Encryption Security Systems, Instant Messaging (IM) Security Systems, Net Privacy Systems, Identity Management Security	7
IV	Data Recovery, Evidence Collection and Data Seizure, Duplication and Preservation of Digital Evidence	Data Recovery Defined ,Data Backup and Recovery ,The Role of Backup in Data Recovery ,The Data-Recovery Solution ,Hiding and Recovering Hidden Data Why Collect Evidence?, Collection Options ,Obstacles ,Types of Evidence ,The Rules of Evidence ,Volatile Evidence ,General Procedure Collection and Archiving, Methods of Collection, Artifacts. Preserving the Digital Crime Scene, Computer Evidence Processing Step.Computer Image Verification and AuthenticationSpecial Needs of Evidential Authentication, Practical Considerations	15
		Total	36

Text Book:

- 1. *Computer Forensics and Investigations*, Nelson, Phillips, Enfinger, Steuart, 3rd Edition, 2008, Cengage Learning, India Edition.
- 2. *Computer Forensics: Computer Crime Scene Investigation,* John R. Vacca, 2nd Edition, 2005, Charles, River Media.

Reference Books:

- 1. John R.Vacca, *Computer Forensics*, 3rd Edition, 2005, Cengage Learning
- 2. Richard E.Smith, *Internet Cryptography*, 3rd Edition, 2008, Pearson Education, 2008.
- 3. Marjie T.Britz, *Computer Forensics and Cyber Crime: An Introduction*, 3rd Edition, 2013, Prentice Hal,.
- 4. ChristofPaar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, 2nd Edition, 2010, Springer's.

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Understand the definition of computer forensics fundamentals. Describe the types of computer forensics technology. Analyze various computer forensics systems. Illustrate the methods for data recovery, evidence collection and data seizure. Summarize duplication and preservation of digital evidence. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VII/Subject Name: Internet of Things		Subject Code: CAP054D305
L-T-P-C – 4-0-0-4 Credit Units: 04		Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To provide a foundation in computing, communication and information technologies.
- To make student realize the revolution of Internet in Mobile Devices, Sensor Networks and Cloud technology.
- To develop the teamwork skills, multidisciplinary approach, and an ability to relate information technology to overcome real world and social issues.
- To induce students with good computing and communication knowledge so as to understand, analyze, design, and innovate a new system

Prerequisites: Concepts of Computer Networks and Programming Language

Detailed Syllabus:

Modules	Topics	Course content	Periods	
I	Introduction	Fundamentals of Internet of Things, IoT Definition, Characteristics of IoT, IoT Vision, IoT Functional View, Application Areas,opportunity and challenges in IoT. Domain Specific IOTs: Home Automation, Cities, Environment, Energy, Retail, Logistics ,Agriculture, Industry, Health & Life Style	9	
II	IoT Technology Fundamentals	Architectural overview, Components of IoT system, Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, IoT analytics, Knowledge management.		
III	Design Principles of IoT	Design principle for connected devices, IoT system layers and design standardization, Networks and Communication: Networking Technology and Communication Technology, Protocols in IOT, Security, Privacy & Trust in IoT		
IV	Hands on IoT	IoT Physical Devices & Endpoints: What is an IoT Device, Exemplary Device, Board, Linux on Raspberry Pi, Interfaces, Types of sensors.	9	
	Total			

Text Book:

- 1. *Internet of Things From Research and Innovation to market Deployment,* Ovidiu Vermesan,Peter Friess, 2014, River Publishers.
- 2. From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence, Jan Ho⁻ ller, Vlasios Tsiatsis, Catherine Mulligan, Stamatis Karnouskos, Stefan Avesand, David Boyle, 1st Edition, 2012, Academic Press Elsevier.
- 3. *Internet of Things (A Hands-on Approach),* Vijay Madisetti and Arshdeep Bahga, 1st Edition, 2014, VPT.

Reference Books:

1. Tim O'Reilly & Cory Doctorow, *Opportunities and Challenges in the IoT*, 2015, O'Reily.

2. Pethuru Raj , Anupama C.Raman, *The Internet of Things, Enabling Technologies, platforms and use cases*, 2017, CRC Press

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Show the understanding of impact of information technology solutions on the society. Understand the application areas of IOT. Understand building blocks of Internet of Things and characteristics. Explored to the interconnection and integration of the physical world and the cyber space. Design & develop IOT Devices. 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

Paper VII/Subject Name: Cryptography and Network Security		Subject Code: CAP054D306
L-T-P-C - 3-1-0-4	Credit Units: 04	Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To explain about the various encryption techniques.
- To make the students understand the concept of Public key cryptography.
- To teach about message authentication and hash functions.
- To impart knowledge on Network security.

Prerequisites: Concepts of Number Theory and Networking

Detailed Syllabus:

Modules	dules Topics Course content		Periods
I Introduction		Overview: Services, Mechanisms and Attacks; The OSI security	9
	Conventional	architecture; Security Models.	
	Cryptography	Techniques; Block Ciphers and the Data Encryption Standard; Differential and Linear Cryptanalysis; Block Cipher Design	
		Principles; Block Cipher modes of Operation.	
		Finite Fields: Review of Groups, Rings, Fields and Modular	
		Arithmetic.	
		Review of Number Theory.	
		Confidentiality using Symmetric Encryption.	-
II	Advanced	Public Key Cryptography: Principles of Public Key Encryption;	9
	Cryptographic the RSA algorithm.		
TechniquesKey Management.		5 0	
		Message Authentication and Hash Functions: Authenticatio	
	Requirements, Functions, Message Authentication Codes		
]		Hash Functions, Hash Algorithms.	
		Digital Signature and Authentication Protocols: Digital	
		Signatures; Authentication Protocols; Digital Signature Standard.	
111	Converte Devoto colo		0
III	Security Protocols	Security Applications and Protocols- Authentication Applications: Secure HTTP, SSH, Kerberos.	9
		Email Security: PGP, S/MIME.	
		IP Security: Overview, IPSec architecture.	
IV	Web and System	Web Security- SSL and Transport Layer Security; HTTPS.	9
1 V	Security	System Security- Intrusion Detection; Malicious Software-	7
	And	Threats and Countermeasures; Firewalls- Design Principles.	
	Recent Research Topics on Recent Research Trends		
	Trends		
	1101105	Total	36

Text Book:

1. *Cryptography and Network Security- Principles and Practice,* William Stallings, 6th Edition, 2013, Pearson Education.

Reference Books:

1. Behrouz A. Forouzan, *Cryptography & Network Security*, 3rd Edition, 2016, Tata McGraw Hill.

Facilitating the Achievement of Course Learning Outcomes

Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 On completion of this course the students will be expected to: Classify the symmetric encryption techniques. Illustrate various Public key cryptographic techniques. Evaluate the authentication and hash algorithms. Discuss authentication applications. Summarize the intrusion detection and its solutions to overcome the attacks and the basic concepts of system level security 	 Each topic to be explained with examples. Students to be motivated to discover the relevant concepts to take part in discussions and ask questions. Students to be given homework/assignments to make their concept clear. Discuss and solve the problems in the class. 	 Participation in class discussions Continuous Evaluation(30Marks) (i)15 marks on Assignments, class tests, viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance:5 marks End-term examinations:70 marks.

11. Detailed Syllabus of Ability Enhancement Elective Curses

Subject Name: General Aptitude and Quantitative Reasoning-I

Subject Code: INT054S201

L-T-P-C - 2-0-0-2

Credit Units: 02

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To formulate the problem quantitatively and use appropriate arithmetical, and/or statistical methods to solve the problem.
- To demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions.
- To interpret quantitative information (i.e., formulas, graphs, tables, models, and schematics) and draw implications from them.

Prerequisites: None

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Quantitative Aptitude-I	Profit loss, ratio, proportion, Sequence and series, permutation, Probability	6
11	Quantitative Aptitude-II	Simple interest, Combination, Number system, Compound Interest, Surds, Logarithm.	6
III	Reasoning-I	Logical Reasoning basics, Coded Inequalities, Alphanumeric series	6
IV	Reasoning-II	Syllogism, Input and Output, Coding and Decoding.	6
Total			24

Text Books:

- 1. *Quantitative Aptitude*, Dr. R.S. Aggarwal, Old Edition, 2008, S.Chand Publication, New Delhi.
- 2. *A Modern Approach to Verbal & Non-Verbal Reasoning*, Dr. R.S Agarwal, 2016 Edition, S.Chand Publication, New Delhi.

Reference Books:

1. Abhijit Guha, *Quantitative Aptitude for Competitive Examinations*, 4th Edition, 2014, McGraw Hill Education

2. Arun Sharma, *How to Prepare for Logical Reasoning for the CAT*, 2015, McGraw Hill Education

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
•Formulate the problem	i) Each topic to be expounded with	(a) Participation in class discussions
quantitatively and use appropriate	adequate examples.	(b)Continuous Evaluation(30Marks)
arithmetical, and/or statistical	ii) Class discussions and question-	(i)15 marks on
methods to solve the problem.	answer rounds are encouraged	Assignments
•Recall Formulae.	iii) theoretical problems solving is	🛛 Class tests.
•Demonstrate various principles	part of the class to grasp the	viva-voce or presentation
involved in solving mathematical	underlying concepts	
problems and thereby reducing the	iv) Students have to go through case	(ii) Mid-term examinations :10
time taken for performing job	studies for real time experience	marks
functions.	v) Students to be encouraged to give	(iii) Class attendance -5 marks
 Interpret quantitative information 	short presentations.	(c) End-term examinations: 70
(i.e., formulas, graphs, tables,		marks.
models, and schematics) and draw		
implications from them.		
Critically evaluate various real life		
situations by resorting to analysis		
of key issues and factors		

Subject Name: General Aptitude and Quantitative Reasoning-II

Subject Code: INT054S302

L-T-P-C - 2-0-0-2

Credit Units: 02

Scheme of Evaluation: T

Objective:

The objectives of the course are:

- To formulate the problem quantitatively and use appropriate arithmetical, and/or statistical methods to solve the problem.
- To demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions.
- To interpret quantitative information (i.e., formulas, graphs, tables, models, and schematics) and draw implications from them.

Prerequisites: General Aptitude and Quantitative Reasoning-I

Detailed Syllabus:

Modules	Topics	Course content	Periods
I	Reasoning Aptitude-I	Logical Reasoning ,Ranking/Direction/Alphabet Test, Data Sufficiency	6
II	Reasoning Aptitude-I	Puzzle, Tabulation, Blood Relations, Seating Arrangement	6
III	Quantitative Aptitude-I	Simplification, Mixtures & Allegations, Work & Time, Time & Distance	6
IV	Quantitative Aptitude-II	Menstruation – Cylinder, Cone, Sphere, Data Interpretation, Ratio & Proportion, Percentage, Number Systems	6
		Total	24

Text Books:

- 1. *Quantitative Aptitude*, Dr. R.S. Aggarwal, Old Edition, 2008, S.Chand Publication, New Delhi.
- 2. *A Modern Approach to Verbal & Non-Verbal Reasoning*, Dr. R.S Agarwal, 2016 Edition, S.Chand Publication, New Delhi.

Reference Books:

1. Abhijit Guha, *Quantitative Aptitude for Competitive Examinations*, 4th Edition, 2014, McGraw Hill Education

2. Arun Sharma, *How to Prepare for Logical Reasoning for the CAT*, 2015, McGraw Hill Education

Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
 Formulate the problem quantitatively and use appropriate arithmetical, and/or statistical methods to solve the problem. Recall Formulae. Demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions. Interpret quantitative information (i.e., formulas, graphs, tables, models, and schematics) and draw implications from them. Critically evaluate various real life situations by resorting to analysis of key issues and factor 	 i) Each topic to be expounded with adequate examples. ii) Class discussions and question- answer rounds are encouraged iii) theoretical problems solving is part of the class to grasp the underlying concepts iv) Students have to go through case studies for real time experience v) Students to be encouraged to give short presentations. 	 (a) Participation in class discussions (b)Continuous Evaluation(30Marks) (i)15 marks on Assignments Class tests. viva-voce or presentation (ii) Mid-term examinations :10 marks (iii) Class attendance -5 marks (c) End-term examinations: 70 marks.